Supervised and semi-supervised training of deep convolutional neural networks for gastric landmark detection

人工智能 计算机科学 卷积神经网络 食管胃十二指肠镜检查 模式识别(心理学) 深度学习 残差神经网络 地标 规范化(社会学) 计算机视觉 医学 内窥镜检查 外科 社会学 人类学
作者
Inês Lopes,Augusto Silva,Miguel Coimbra,Mário Dinis‐Ribeiro,Diogo Libânio,Francesco Renna
标识
DOI:10.1109/embc48229.2022.9870992
摘要

This work focuses on detection of upper gas-trointestinal (GI) landmarks, which are important anatomical areas of the upper GI tract digestive system that should be photodocumented during endoscopy to guarantee a complete examination. The aim of this work consisted in testing new automatic algorithms, specifically based on convolutional neural network (CNN) systems, able to detect upper GI landmarks, that can help to avoid the presence of blind spots during esophagogastroduodenoscopy. We tested pre-trained CNN architectures, such as the ResNet-50 and VGG-16, in conjunction with different training approaches, including the use of class weights, batch normalization, dropout, and data augmentation. The ResNet-50 model trained with class weights was the best performing CNN, achieving an accuracy of 71.79% and a Mathews Correlation Coefficient (MCC) of 65.06%. The combination of supervised and unsupervised learning was also explored to increase classification performance. In particular, convolutional autoencoder architectures trained with unlabeled GI images were used to extract representative features. Such features were then concatenated with those extracted by the pre-trained ResNet-50 architecture. This approach achieved a classification accuracy of 72.45% and an MCC of 65.08%. Clinical relevance— Esophagogastroduodenoscopy (EGD) photodocumentation is essential to guarantee that all areas of the upper GI system are examined avoiding blind spots. This work has the objective to help the EGD photodocumentation monitorization by testing new CNN-based systems able to detect EGD landmarks

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CXE发布了新的文献求助10
刚刚
冷月完成签到,获得积分10
刚刚
xie完成签到,获得积分20
1秒前
时尚的傲霜完成签到,获得积分10
1秒前
奋斗水香完成签到,获得积分10
1秒前
孔问筠完成签到,获得积分0
1秒前
Orange应助Dream采纳,获得10
3秒前
3秒前
yeeming应助zy采纳,获得10
4秒前
4秒前
4秒前
狂野世立完成签到,获得积分10
4秒前
胡小溪完成签到,获得积分10
5秒前
5秒前
Donby完成签到,获得积分10
5秒前
5秒前
Liyiheng完成签到,获得积分10
5秒前
ss完成签到,获得积分10
6秒前
Hello应助小叶子采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
Xiaoxiannv发布了新的文献求助10
7秒前
yan完成签到,获得积分10
8秒前
陆离完成签到 ,获得积分10
8秒前
woshidahunzi完成签到,获得积分10
8秒前
Muncy完成签到 ,获得积分10
8秒前
薯条完成签到,获得积分10
8秒前
8秒前
mmmm完成签到,获得积分10
8秒前
李晓龙发布了新的文献求助10
9秒前
9秒前
wangqiuyue发布了新的文献求助10
9秒前
nannannan发布了新的文献求助10
9秒前
民大胡完成签到,获得积分10
9秒前
Jally完成签到 ,获得积分10
9秒前
小膘膘完成签到,获得积分10
10秒前
甜蜜的马里奥完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510332
求助须知:如何正确求助?哪些是违规求助? 4605039
关于积分的说明 14492282
捐赠科研通 4540182
什么是DOI,文献DOI怎么找? 2487851
邀请新用户注册赠送积分活动 1470038
关于科研通互助平台的介绍 1442567