Supervised and semi-supervised training of deep convolutional neural networks for gastric landmark detection

人工智能 计算机科学 卷积神经网络 食管胃十二指肠镜检查 模式识别(心理学) 深度学习 残差神经网络 地标 规范化(社会学) 计算机视觉 医学 内窥镜检查 外科 社会学 人类学
作者
Inês Lopes,Augusto Silva,Miguel Coimbra,Mário Dinis‐Ribeiro,Diogo Libânio,Francesco Renna
标识
DOI:10.1109/embc48229.2022.9870992
摘要

This work focuses on detection of upper gas-trointestinal (GI) landmarks, which are important anatomical areas of the upper GI tract digestive system that should be photodocumented during endoscopy to guarantee a complete examination. The aim of this work consisted in testing new automatic algorithms, specifically based on convolutional neural network (CNN) systems, able to detect upper GI landmarks, that can help to avoid the presence of blind spots during esophagogastroduodenoscopy. We tested pre-trained CNN architectures, such as the ResNet-50 and VGG-16, in conjunction with different training approaches, including the use of class weights, batch normalization, dropout, and data augmentation. The ResNet-50 model trained with class weights was the best performing CNN, achieving an accuracy of 71.79% and a Mathews Correlation Coefficient (MCC) of 65.06%. The combination of supervised and unsupervised learning was also explored to increase classification performance. In particular, convolutional autoencoder architectures trained with unlabeled GI images were used to extract representative features. Such features were then concatenated with those extracted by the pre-trained ResNet-50 architecture. This approach achieved a classification accuracy of 72.45% and an MCC of 65.08%. Clinical relevance— Esophagogastroduodenoscopy (EGD) photodocumentation is essential to guarantee that all areas of the upper GI system are examined avoiding blind spots. This work has the objective to help the EGD photodocumentation monitorization by testing new CNN-based systems able to detect EGD landmarks
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻的小刺猬完成签到,获得积分10
刚刚
CLMY发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
牛牛牛完成签到,获得积分10
2秒前
金水完成签到,获得积分10
2秒前
李爱国应助自然的电脑采纳,获得10
3秒前
科目三应助lucas采纳,获得10
3秒前
十一发布了新的文献求助10
4秒前
可爱的函函应助李建行采纳,获得10
4秒前
111发布了新的文献求助10
5秒前
5秒前
kuma驳回了SYLH应助
5秒前
5秒前
5秒前
7秒前
7秒前
7秒前
7秒前
Junsir发布了新的文献求助10
7秒前
8秒前
子凯完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
西西发布了新的文献求助10
10秒前
ttttt发布了新的文献求助10
12秒前
南笙发布了新的文献求助30
13秒前
13秒前
蒋蒋发布了新的文献求助10
13秒前
刘玥言发布了新的文献求助10
13秒前
卫三发布了新的文献求助10
14秒前
机灵白桃发布了新的文献求助10
14秒前
芋泥泥泥完成签到,获得积分10
15秒前
Orange应助111采纳,获得10
15秒前
希望天下0贩的0应助Hexagram采纳,获得10
15秒前
16秒前
qweasdzxcqwe完成签到,获得积分10
17秒前
LuoYixiang发布了新的文献求助10
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524030
关于积分的说明 11219577
捐赠科研通 3261464
什么是DOI,文献DOI怎么找? 1800674
邀请新用户注册赠送积分活动 879241
科研通“疑难数据库(出版商)”最低求助积分说明 807226