Multimodal Contrastive Supervised Learning to Classify Clinical Significance MRI Regions on Prostate Cancer

人工智能 计算机科学 前列腺癌 元组 深度学习 模式识别(心理学) 学习迁移 机器学习 监督学习 参数统计 特征学习 医学 癌症 人工神经网络 数学 统计 离散数学 内科学
作者
Yesid Gutiérrez,John Arévalo,Fabio Martínez
标识
DOI:10.1109/embc48229.2022.9871243
摘要

Clinically significant regions (CSR), captured over multi-parametric MRI (mp-MRI) images, have emerged as a potential screening test for early prostate cancer detection and characterization. These sequences are able to quantify morphology, micro-circulation, and cellular density patterns that might be related to cancer disease. Nonetheless, this evaluation is mainly carried out by expert radiologists, introducing inter-reader variability in the diagnosis. Therefore, different deep learning models were proposed to support the diagnosis, but a proper representation of prostate lesions remains limited due to the non-alignment among sequences and the dependency of considerable amounts of labeled data for learning. The main limitation of such representation lies in the cross-entropy minimization that only exploits inter-class variation, being insufficient data augmentation and transfer learning strategies. This work introduces a Supervised Contrastive Learning (SCL) strategy that fully exploits the inter and intra-class variability of prostate lesions to robustly represent MRI regions. This strategy extracts lesion sample tuples, with positive and negative labels, regarding a query lesion. Such tuples are involved into an easy-positive, and semi-hard negative mining to project samples that better update the deep representation. The proposed learning strategy achieved an average ROC-AVC of 0.82, to characterize prostate cancer in MRI, using only the 60% of the available annotated data. Clinical relevance - A robust learning scheme that properly finds representations in limited data scenarios to classify clinically significant MRI regions on prostate cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ooooozhubi发布了新的文献求助10
刚刚
丘比特应助xyx采纳,获得10
刚刚
徐嘿嘿完成签到,获得积分10
1秒前
今后应助w1kend采纳,获得10
2秒前
luo完成签到,获得积分10
2秒前
2秒前
徐甜完成签到 ,获得积分10
4秒前
zhizhi完成签到,获得积分10
4秒前
4秒前
5秒前
eric888应助wencan采纳,获得10
5秒前
乐乐应助Serena采纳,获得10
5秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
Syne_发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
Siriluck完成签到 ,获得积分10
11秒前
luo发布了新的文献求助10
11秒前
wyw完成签到 ,获得积分10
12秒前
徐哈哈完成签到,获得积分10
12秒前
July完成签到 ,获得积分10
13秒前
上官若男应助keyantongxdl采纳,获得10
13秒前
123发布了新的文献求助10
13秒前
14秒前
孤雁北上发布了新的文献求助10
15秒前
16秒前
17秒前
刘振扬完成签到,获得积分10
18秒前
月下独酌完成签到,获得积分10
19秒前
zzzz完成签到,获得积分20
20秒前
21秒前
22秒前
蓝天应助ll200207采纳,获得10
22秒前
香蕉诗蕊应助Syne_采纳,获得10
23秒前
去码头整点薯条完成签到,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680022
求助须知:如何正确求助?哪些是违规求助? 4995227
关于积分的说明 15171337
捐赠科研通 4839788
什么是DOI,文献DOI怎么找? 2593645
邀请新用户注册赠送积分活动 1546635
关于科研通互助平台的介绍 1504749