Multimodal Contrastive Supervised Learning to Classify Clinical Significance MRI Regions on Prostate Cancer

人工智能 计算机科学 前列腺癌 元组 深度学习 模式识别(心理学) 学习迁移 机器学习 监督学习 参数统计 特征学习 医学 癌症 人工神经网络 数学 统计 离散数学 内科学
作者
Yesid Gutiérrez,John Arévalo,Fabio Martínez
标识
DOI:10.1109/embc48229.2022.9871243
摘要

Clinically significant regions (CSR), captured over multi-parametric MRI (mp-MRI) images, have emerged as a potential screening test for early prostate cancer detection and characterization. These sequences are able to quantify morphology, micro-circulation, and cellular density patterns that might be related to cancer disease. Nonetheless, this evaluation is mainly carried out by expert radiologists, introducing inter-reader variability in the diagnosis. Therefore, different deep learning models were proposed to support the diagnosis, but a proper representation of prostate lesions remains limited due to the non-alignment among sequences and the dependency of considerable amounts of labeled data for learning. The main limitation of such representation lies in the cross-entropy minimization that only exploits inter-class variation, being insufficient data augmentation and transfer learning strategies. This work introduces a Supervised Contrastive Learning (SCL) strategy that fully exploits the inter and intra-class variability of prostate lesions to robustly represent MRI regions. This strategy extracts lesion sample tuples, with positive and negative labels, regarding a query lesion. Such tuples are involved into an easy-positive, and semi-hard negative mining to project samples that better update the deep representation. The proposed learning strategy achieved an average ROC-AVC of 0.82, to characterize prostate cancer in MRI, using only the 60% of the available annotated data. Clinical relevance - A robust learning scheme that properly finds representations in limited data scenarios to classify clinically significant MRI regions on prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助浮沉采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
彭于晏应助落寞易形采纳,获得10
2秒前
2秒前
丘比特应助ily.采纳,获得10
3秒前
3秒前
好的发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
Orange应助萧萧采纳,获得10
4秒前
青羽完成签到 ,获得积分10
4秒前
勤恳的彩虹完成签到,获得积分10
5秒前
6秒前
6秒前
可爱的函函应助PENGXIN采纳,获得10
6秒前
7秒前
kk发布了新的文献求助10
7秒前
心兮完成签到 ,获得积分10
8秒前
yueee完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助硝基采纳,获得10
8秒前
核桃应助pan liu采纳,获得30
9秒前
随想发布了新的文献求助10
9秒前
247793325发布了新的文献求助10
10秒前
fyukgfdyifotrf完成签到,获得积分10
10秒前
科研通AI2S应助Zz采纳,获得10
10秒前
杨怡羊发布了新的文献求助10
11秒前
萧萧发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
13秒前
许星意完成签到,获得积分10
13秒前
CXY完成签到,获得积分10
13秒前
lalll完成签到,获得积分20
14秒前
14秒前
黑裤子熊完成签到,获得积分10
14秒前
xin完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468778
求助须知:如何正确求助?哪些是违规求助? 4572121
关于积分的说明 14333712
捐赠科研通 4498948
什么是DOI,文献DOI怎么找? 2464734
邀请新用户注册赠送积分活动 1453361
关于科研通互助平台的介绍 1427921