人工智能
计算机科学
前列腺癌
元组
深度学习
模式识别(心理学)
学习迁移
机器学习
监督学习
参数统计
特征学习
医学
癌症
人工神经网络
数学
统计
离散数学
内科学
作者
Yesid Gutiérrez,John Arévalo,Fabio Martínez
标识
DOI:10.1109/embc48229.2022.9871243
摘要
Clinically significant regions (CSR), captured over multi-parametric MRI (mp-MRI) images, have emerged as a potential screening test for early prostate cancer detection and characterization. These sequences are able to quantify morphology, micro-circulation, and cellular density patterns that might be related to cancer disease. Nonetheless, this evaluation is mainly carried out by expert radiologists, introducing inter-reader variability in the diagnosis. Therefore, different deep learning models were proposed to support the diagnosis, but a proper representation of prostate lesions remains limited due to the non-alignment among sequences and the dependency of considerable amounts of labeled data for learning. The main limitation of such representation lies in the cross-entropy minimization that only exploits inter-class variation, being insufficient data augmentation and transfer learning strategies. This work introduces a Supervised Contrastive Learning (SCL) strategy that fully exploits the inter and intra-class variability of prostate lesions to robustly represent MRI regions. This strategy extracts lesion sample tuples, with positive and negative labels, regarding a query lesion. Such tuples are involved into an easy-positive, and semi-hard negative mining to project samples that better update the deep representation. The proposed learning strategy achieved an average ROC-AVC of 0.82, to characterize prostate cancer in MRI, using only the 60% of the available annotated data. Clinical relevance - A robust learning scheme that properly finds representations in limited data scenarios to classify clinically significant MRI regions on prostate cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI