Multimodal Contrastive Supervised Learning to Classify Clinical Significance MRI Regions on Prostate Cancer

人工智能 计算机科学 前列腺癌 元组 深度学习 模式识别(心理学) 学习迁移 机器学习 监督学习 参数统计 特征学习 医学 癌症 人工神经网络 数学 统计 离散数学 内科学
作者
Yesid Gutiérrez,John Arévalo,Fabio Martínez
标识
DOI:10.1109/embc48229.2022.9871243
摘要

Clinically significant regions (CSR), captured over multi-parametric MRI (mp-MRI) images, have emerged as a potential screening test for early prostate cancer detection and characterization. These sequences are able to quantify morphology, micro-circulation, and cellular density patterns that might be related to cancer disease. Nonetheless, this evaluation is mainly carried out by expert radiologists, introducing inter-reader variability in the diagnosis. Therefore, different deep learning models were proposed to support the diagnosis, but a proper representation of prostate lesions remains limited due to the non-alignment among sequences and the dependency of considerable amounts of labeled data for learning. The main limitation of such representation lies in the cross-entropy minimization that only exploits inter-class variation, being insufficient data augmentation and transfer learning strategies. This work introduces a Supervised Contrastive Learning (SCL) strategy that fully exploits the inter and intra-class variability of prostate lesions to robustly represent MRI regions. This strategy extracts lesion sample tuples, with positive and negative labels, regarding a query lesion. Such tuples are involved into an easy-positive, and semi-hard negative mining to project samples that better update the deep representation. The proposed learning strategy achieved an average ROC-AVC of 0.82, to characterize prostate cancer in MRI, using only the 60% of the available annotated data. Clinical relevance - A robust learning scheme that properly finds representations in limited data scenarios to classify clinically significant MRI regions on prostate cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐的云发布了新的文献求助10
1秒前
英姑应助Qps采纳,获得10
2秒前
5秒前
5秒前
flora发布了新的文献求助10
5秒前
魂梦与君同完成签到 ,获得积分10
6秒前
酷波er应助su采纳,获得10
6秒前
7秒前
聪明新筠完成签到,获得积分10
7秒前
活泼巧曼完成签到,获得积分10
7秒前
充电宝应助肚子饿了采纳,获得10
7秒前
8秒前
8秒前
七木完成签到,获得积分10
8秒前
9秒前
归尘发布了新的文献求助10
10秒前
10秒前
10秒前
小文_official完成签到 ,获得积分10
11秒前
thunder完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
氨气完成签到 ,获得积分10
12秒前
震动的曲奇完成签到,获得积分10
12秒前
13秒前
12345发布了新的文献求助10
13秒前
14秒前
上官若男应助333采纳,获得10
14秒前
15秒前
进击的软骨完成签到,获得积分10
15秒前
JamesPei应助茶米采纳,获得10
15秒前
15秒前
初一发布了新的文献求助10
16秒前
16秒前
汉堡包应助sinlar采纳,获得10
16秒前
16秒前
16秒前
LOU发布了新的文献求助10
17秒前
stokis03完成签到 ,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207