Multimodal Contrastive Supervised Learning to Classify Clinical Significance MRI Regions on Prostate Cancer

人工智能 计算机科学 前列腺癌 元组 深度学习 模式识别(心理学) 学习迁移 机器学习 监督学习 参数统计 特征学习 医学 癌症 人工神经网络 数学 统计 离散数学 内科学
作者
Yesid Gutiérrez,John Arévalo,Fabio Martínez
标识
DOI:10.1109/embc48229.2022.9871243
摘要

Clinically significant regions (CSR), captured over multi-parametric MRI (mp-MRI) images, have emerged as a potential screening test for early prostate cancer detection and characterization. These sequences are able to quantify morphology, micro-circulation, and cellular density patterns that might be related to cancer disease. Nonetheless, this evaluation is mainly carried out by expert radiologists, introducing inter-reader variability in the diagnosis. Therefore, different deep learning models were proposed to support the diagnosis, but a proper representation of prostate lesions remains limited due to the non-alignment among sequences and the dependency of considerable amounts of labeled data for learning. The main limitation of such representation lies in the cross-entropy minimization that only exploits inter-class variation, being insufficient data augmentation and transfer learning strategies. This work introduces a Supervised Contrastive Learning (SCL) strategy that fully exploits the inter and intra-class variability of prostate lesions to robustly represent MRI regions. This strategy extracts lesion sample tuples, with positive and negative labels, regarding a query lesion. Such tuples are involved into an easy-positive, and semi-hard negative mining to project samples that better update the deep representation. The proposed learning strategy achieved an average ROC-AVC of 0.82, to characterize prostate cancer in MRI, using only the 60% of the available annotated data. Clinical relevance - A robust learning scheme that properly finds representations in limited data scenarios to classify clinically significant MRI regions on prostate cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yv发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
panzhongjie发布了新的文献求助10
刚刚
共享精神应助jason采纳,获得10
1秒前
longlong完成签到,获得积分10
1秒前
2秒前
left_right完成签到,获得积分10
2秒前
3秒前
执着的麦片完成签到,获得积分10
5秒前
5秒前
云不归完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
8秒前
junxu发布了新的文献求助10
9秒前
some发布了新的文献求助10
9秒前
11秒前
坚果发布了新的文献求助10
11秒前
风趣冬瓜发布了新的文献求助10
12秒前
羊羊发布了新的文献求助10
12秒前
15秒前
田様应助大力山槐采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
16秒前
花卷应助科研通管家采纳,获得20
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
彭于彦祖应助科研通管家采纳,获得30
16秒前
Owen应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
qqrtqr应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
彭于彦祖应助科研通管家采纳,获得30
17秒前
慕青应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601572
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847258
捐赠科研通 4681425
什么是DOI,文献DOI怎么找? 2539420
邀请新用户注册赠送积分活动 1506336
关于科研通互助平台的介绍 1471297