Multimodal Contrastive Supervised Learning to Classify Clinical Significance MRI Regions on Prostate Cancer

人工智能 计算机科学 前列腺癌 元组 深度学习 模式识别(心理学) 学习迁移 机器学习 监督学习 参数统计 特征学习 医学 癌症 人工神经网络 数学 统计 离散数学 内科学
作者
Yesid Gutiérrez,John Arévalo,Fabio Martínez
标识
DOI:10.1109/embc48229.2022.9871243
摘要

Clinically significant regions (CSR), captured over multi-parametric MRI (mp-MRI) images, have emerged as a potential screening test for early prostate cancer detection and characterization. These sequences are able to quantify morphology, micro-circulation, and cellular density patterns that might be related to cancer disease. Nonetheless, this evaluation is mainly carried out by expert radiologists, introducing inter-reader variability in the diagnosis. Therefore, different deep learning models were proposed to support the diagnosis, but a proper representation of prostate lesions remains limited due to the non-alignment among sequences and the dependency of considerable amounts of labeled data for learning. The main limitation of such representation lies in the cross-entropy minimization that only exploits inter-class variation, being insufficient data augmentation and transfer learning strategies. This work introduces a Supervised Contrastive Learning (SCL) strategy that fully exploits the inter and intra-class variability of prostate lesions to robustly represent MRI regions. This strategy extracts lesion sample tuples, with positive and negative labels, regarding a query lesion. Such tuples are involved into an easy-positive, and semi-hard negative mining to project samples that better update the deep representation. The proposed learning strategy achieved an average ROC-AVC of 0.82, to characterize prostate cancer in MRI, using only the 60% of the available annotated data. Clinical relevance - A robust learning scheme that properly finds representations in limited data scenarios to classify clinically significant MRI regions on prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bjbbh发布了新的文献求助10
刚刚
皓月千里完成签到,获得积分10
刚刚
夏小安完成签到,获得积分10
刚刚
1秒前
ymh完成签到,获得积分10
1秒前
starry发布了新的文献求助10
1秒前
hualidy完成签到,获得积分10
1秒前
qifa完成签到,获得积分10
1秒前
1秒前
春夏秋冬发布了新的文献求助10
1秒前
习习发布了新的文献求助10
2秒前
2秒前
往事无痕完成签到 ,获得积分10
3秒前
3秒前
3秒前
逸龙完成签到,获得积分10
3秒前
buno应助单纯的雅香采纳,获得10
4秒前
xinchengzhu发布了新的文献求助10
5秒前
派大星发布了新的文献求助10
5秒前
科研通AI5应助黄紫红蓝采纳,获得10
6秒前
6秒前
6秒前
fff发布了新的文献求助10
6秒前
6秒前
7秒前
科研人发布了新的文献求助10
7秒前
7秒前
徐慕源发布了新的文献求助10
7秒前
wenwen完成签到,获得积分10
7秒前
XZZH完成签到,获得积分10
8秒前
清浅发布了新的文献求助10
8秒前
车到山前必有路女士完成签到,获得积分10
8秒前
JamesPei应助Ripples采纳,获得10
8秒前
8秒前
我是老大应助乐园采纳,获得10
9秒前
10秒前
个木发布了新的文献求助10
10秒前
谨慎不二发布了新的文献求助10
10秒前
CodeCraft应助lishunzcqty采纳,获得10
11秒前
青丝落花完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678