清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A UAV-Based Aircraft Surface Defect Inspection System via External Constraints and Deep Learning

机身 惯性测量装置 人工智能 计算机视觉 计算机科学 姿势 实时计算 工程类 航空航天工程
作者
Yuanpeng Liu,Jingxuan Dong,Yida Li,Xiaoxi Gong,Jun Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-15 被引量:8
标识
DOI:10.1109/tim.2022.3198713
摘要

In the field of aircraft maintenance, regular inspection of fuselage surface during the aircraft life cycle is a vital task to ensure the aircraft quality and flight safety. Currently, the inspection task is generally carried out manually in an indoor hangar, which is with low efficiency and reliability. In this article, a novel system based on the unmanned aerial vehicle (UAV) is presented to achieve automated aircraft surface inspection efficiently. The hardware is established with a lightweight and low-cost flight platform, on which a sensor containing an inertial measurement unit (IMU) and a camera is equipped for UAV localization. A high-resolution camera is equipped to collect images of fuselage for defect detection. Our inspection framework is mainly composed of two modules: the UAV localization module and the defect detection module. The localization module is designed to estimate the relative pose between the UAV and the aircraft, providing the foundation for image positioning on the aircraft surface. The existing visual–inertial odometry (VIO) approach is adopted to implement the pose estimation. To reduce the large drifts caused by the VIO approach, a novel method is proposed to deploy precalibrated ArUco markers around the aircraft, which serve as external constraints for the VIO objective to realize joint optimization of the camera pose. In addition, an adaptive weighting method is proposed, which takes into consideration the recognition effect of markers to balance the external constraints. The defect detection module aims to detect defects on the fuselage surface from images captured by the high-resolution camera, which is implemented based on deep learning. To address the issue of detection on a few training samples, the transfer learning strategy is exploited to first pretrain the model on a public defect dataset and then fine-tune it on our collected aircraft defect dataset. After detecting the defects, the defective region is reflected on the fuselage surface through the UAV pose on the corresponding frame provided by the localization module, realizing the accurate defect localization. Experiments on both the simulation environment and real data demonstrate the superiority of our proposed external localization module and the effectiveness of the crack detection module.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alisha完成签到,获得积分10
1秒前
2秒前
13秒前
15秒前
亮总完成签到 ,获得积分10
17秒前
每天都在瘦的仙女完成签到,获得积分10
18秒前
0923给0923的求助进行了留言
20秒前
charih完成签到 ,获得积分10
20秒前
20秒前
pluto应助wang采纳,获得50
21秒前
pluto应助wang采纳,获得50
21秒前
24秒前
27秒前
范白容完成签到 ,获得积分0
30秒前
123完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助10
34秒前
LRR完成签到 ,获得积分10
37秒前
lingling完成签到 ,获得积分10
44秒前
科研通AI6应助科研通管家采纳,获得10
45秒前
科研通AI6应助科研通管家采纳,获得10
45秒前
45秒前
科研通AI6应助科研通管家采纳,获得10
45秒前
科研通AI6应助科研通管家采纳,获得10
45秒前
叁月二完成签到 ,获得积分10
49秒前
雪山飞龙发布了新的文献求助30
51秒前
1分钟前
木木SCI完成签到 ,获得积分10
1分钟前
无辜的行云完成签到 ,获得积分0
1分钟前
1分钟前
LeoBigman完成签到 ,获得积分10
1分钟前
0923发布了新的文献求助10
1分钟前
传奇3应助寒冷的断秋采纳,获得10
1分钟前
爱静静完成签到,获得积分0
1分钟前
情怀应助高兴的世倌采纳,获得10
1分钟前
和谐的夏岚完成签到 ,获得积分10
1分钟前
1分钟前
林小木完成签到,获得积分10
1分钟前
NexusExplorer应助嘻嘻哈哈采纳,获得10
2分钟前
2分钟前
冷酷饼干完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773169
求助须知:如何正确求助?哪些是违规求助? 5607955
关于积分的说明 15430575
捐赠科研通 4905797
什么是DOI,文献DOI怎么找? 2639754
邀请新用户注册赠送积分活动 1587697
关于科研通互助平台的介绍 1542661