A UAV-Based Aircraft Surface Defect Inspection System via External Constraints and Deep Learning

机身 惯性测量装置 人工智能 计算机视觉 计算机科学 姿势 实时计算 工程类 航空航天工程
作者
Yuanpeng Liu,Jingxuan Dong,Yida Li,Xiaoxi Gong,Jun Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-15 被引量:8
标识
DOI:10.1109/tim.2022.3198713
摘要

In the field of aircraft maintenance, regular inspection of fuselage surface during the aircraft life cycle is a vital task to ensure the aircraft quality and flight safety. Currently, the inspection task is generally carried out manually in an indoor hangar, which is with low efficiency and reliability. In this article, a novel system based on the unmanned aerial vehicle (UAV) is presented to achieve automated aircraft surface inspection efficiently. The hardware is established with a lightweight and low-cost flight platform, on which a sensor containing an inertial measurement unit (IMU) and a camera is equipped for UAV localization. A high-resolution camera is equipped to collect images of fuselage for defect detection. Our inspection framework is mainly composed of two modules: the UAV localization module and the defect detection module. The localization module is designed to estimate the relative pose between the UAV and the aircraft, providing the foundation for image positioning on the aircraft surface. The existing visual–inertial odometry (VIO) approach is adopted to implement the pose estimation. To reduce the large drifts caused by the VIO approach, a novel method is proposed to deploy precalibrated ArUco markers around the aircraft, which serve as external constraints for the VIO objective to realize joint optimization of the camera pose. In addition, an adaptive weighting method is proposed, which takes into consideration the recognition effect of markers to balance the external constraints. The defect detection module aims to detect defects on the fuselage surface from images captured by the high-resolution camera, which is implemented based on deep learning. To address the issue of detection on a few training samples, the transfer learning strategy is exploited to first pretrain the model on a public defect dataset and then fine-tune it on our collected aircraft defect dataset. After detecting the defects, the defective region is reflected on the fuselage surface through the UAV pose on the corresponding frame provided by the localization module, realizing the accurate defect localization. Experiments on both the simulation environment and real data demonstrate the superiority of our proposed external localization module and the effectiveness of the crack detection module.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
纪外绣发布了新的文献求助30
2秒前
2秒前
zyy发布了新的文献求助10
2秒前
顺利汉堡发布了新的文献求助10
3秒前
Joyce发布了新的文献求助30
3秒前
Dylan发布了新的文献求助10
3秒前
Muncy完成签到 ,获得积分10
4秒前
4秒前
jing发布了新的文献求助10
4秒前
一个人的表情完成签到,获得积分10
4秒前
wenxian完成签到,获得积分10
4秒前
7ouo发布了新的文献求助10
5秒前
5秒前
watgos完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
火星上的万天完成签到,获得积分10
7秒前
Sandy11发布了新的文献求助200
7秒前
滑倩影完成签到,获得积分10
7秒前
凶狠的储完成签到,获得积分10
8秒前
9秒前
月月应助sinlar采纳,获得10
9秒前
10秒前
10秒前
Cosmos关注了科研通微信公众号
10秒前
11秒前
naturehome完成签到,获得积分10
11秒前
11秒前
刘丰铭发布了新的文献求助10
11秒前
DIPLO发布了新的文献求助10
11秒前
11秒前
假装学霸完成签到 ,获得积分10
12秒前
一一完成签到 ,获得积分10
12秒前
斯文败类应助流光采纳,获得10
12秒前
13秒前
13秒前
huohua完成签到 ,获得积分10
13秒前
fang完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809