A UAV-Based Aircraft Surface Defect Inspection System via External Constraints and Deep Learning

机身 惯性测量装置 人工智能 计算机视觉 计算机科学 姿势 实时计算 工程类 航空航天工程
作者
Yuanpeng Liu,Jingxuan Dong,Yida Li,Xiaoxi Gong,Jun Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-15 被引量:8
标识
DOI:10.1109/tim.2022.3198713
摘要

In the field of aircraft maintenance, regular inspection of fuselage surface during the aircraft life cycle is a vital task to ensure the aircraft quality and flight safety. Currently, the inspection task is generally carried out manually in an indoor hangar, which is with low efficiency and reliability. In this article, a novel system based on the unmanned aerial vehicle (UAV) is presented to achieve automated aircraft surface inspection efficiently. The hardware is established with a lightweight and low-cost flight platform, on which a sensor containing an inertial measurement unit (IMU) and a camera is equipped for UAV localization. A high-resolution camera is equipped to collect images of fuselage for defect detection. Our inspection framework is mainly composed of two modules: the UAV localization module and the defect detection module. The localization module is designed to estimate the relative pose between the UAV and the aircraft, providing the foundation for image positioning on the aircraft surface. The existing visual–inertial odometry (VIO) approach is adopted to implement the pose estimation. To reduce the large drifts caused by the VIO approach, a novel method is proposed to deploy precalibrated ArUco markers around the aircraft, which serve as external constraints for the VIO objective to realize joint optimization of the camera pose. In addition, an adaptive weighting method is proposed, which takes into consideration the recognition effect of markers to balance the external constraints. The defect detection module aims to detect defects on the fuselage surface from images captured by the high-resolution camera, which is implemented based on deep learning. To address the issue of detection on a few training samples, the transfer learning strategy is exploited to first pretrain the model on a public defect dataset and then fine-tune it on our collected aircraft defect dataset. After detecting the defects, the defective region is reflected on the fuselage surface through the UAV pose on the corresponding frame provided by the localization module, realizing the accurate defect localization. Experiments on both the simulation environment and real data demonstrate the superiority of our proposed external localization module and the effectiveness of the crack detection module.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jing发布了新的文献求助30
1秒前
2秒前
Lucas应助真真采纳,获得10
2秒前
tianliyan完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
spc68应助科研通管家采纳,获得10
4秒前
cling发布了新的文献求助10
4秒前
spc68应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
5秒前
5秒前
dsk发布了新的文献求助10
5秒前
善学以致用应助lhy采纳,获得10
6秒前
8秒前
mo发布了新的文献求助10
9秒前
Sunni发布了新的文献求助10
9秒前
ymjssg应助李东东采纳,获得10
9秒前
9秒前
尔蝶发布了新的文献求助10
9秒前
善学以致用应助jzyy采纳,获得10
10秒前
paprika完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
123456发布了新的文献求助10
14秒前
小白发布了新的文献求助30
14秒前
智障猫完成签到,获得积分10
14秒前
jzyy完成签到,获得积分10
14秒前
隐形曼青应助FlameHaze采纳,获得10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749883
求助须知:如何正确求助?哪些是违规求助? 5461217
关于积分的说明 15364933
捐赠科研通 4889213
什么是DOI,文献DOI怎么找? 2628975
邀请新用户注册赠送积分活动 1577249
关于科研通互助平台的介绍 1533894