A UAV-Based Aircraft Surface Defect Inspection System via External Constraints and Deep Learning

机身 惯性测量装置 人工智能 计算机视觉 计算机科学 姿势 实时计算 工程类 航空航天工程
作者
Yuanpeng Liu,Jingxuan Dong,Yida Li,Xiaoxi Gong,Jun Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-15 被引量:8
标识
DOI:10.1109/tim.2022.3198713
摘要

In the field of aircraft maintenance, regular inspection of fuselage surface during the aircraft life cycle is a vital task to ensure the aircraft quality and flight safety. Currently, the inspection task is generally carried out manually in an indoor hangar, which is with low efficiency and reliability. In this article, a novel system based on the unmanned aerial vehicle (UAV) is presented to achieve automated aircraft surface inspection efficiently. The hardware is established with a lightweight and low-cost flight platform, on which a sensor containing an inertial measurement unit (IMU) and a camera is equipped for UAV localization. A high-resolution camera is equipped to collect images of fuselage for defect detection. Our inspection framework is mainly composed of two modules: the UAV localization module and the defect detection module. The localization module is designed to estimate the relative pose between the UAV and the aircraft, providing the foundation for image positioning on the aircraft surface. The existing visual–inertial odometry (VIO) approach is adopted to implement the pose estimation. To reduce the large drifts caused by the VIO approach, a novel method is proposed to deploy precalibrated ArUco markers around the aircraft, which serve as external constraints for the VIO objective to realize joint optimization of the camera pose. In addition, an adaptive weighting method is proposed, which takes into consideration the recognition effect of markers to balance the external constraints. The defect detection module aims to detect defects on the fuselage surface from images captured by the high-resolution camera, which is implemented based on deep learning. To address the issue of detection on a few training samples, the transfer learning strategy is exploited to first pretrain the model on a public defect dataset and then fine-tune it on our collected aircraft defect dataset. After detecting the defects, the defective region is reflected on the fuselage surface through the UAV pose on the corresponding frame provided by the localization module, realizing the accurate defect localization. Experiments on both the simulation environment and real data demonstrate the superiority of our proposed external localization module and the effectiveness of the crack detection module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
现代冰绿发布了新的文献求助10
1秒前
852应助科研通管家采纳,获得10
1秒前
张雷应助科研通管家采纳,获得20
1秒前
1秒前
SHAO应助科研通管家采纳,获得10
1秒前
YamDaamCaa应助科研通管家采纳,获得50
1秒前
q1356478314应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
Theprisoners应助科研通管家采纳,获得20
1秒前
wanci应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
小二郎应助张浩采纳,获得10
2秒前
3秒前
3秒前
Zsir发布了新的文献求助10
4秒前
NexusExplorer应助优雅冬灵采纳,获得10
4秒前
高骏伟发布了新的文献求助10
5秒前
8秒前
9秒前
Orange应助落俗采纳,获得10
10秒前
板凳完成签到 ,获得积分10
10秒前
11秒前
阿北完成签到,获得积分10
12秒前
13秒前
勤劳宛菡完成签到 ,获得积分10
15秒前
wang0626完成签到 ,获得积分10
15秒前
16秒前
17秒前
xi发布了新的文献求助10
17秒前
汉堡包应助duanhuiyuan采纳,获得10
18秒前
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993454
求助须知:如何正确求助?哪些是违规求助? 3534113
关于积分的说明 11264719
捐赠科研通 3273986
什么是DOI,文献DOI怎么找? 1806200
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662