清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A UAV-Based Aircraft Surface Defect Inspection System via External Constraints and Deep Learning

机身 惯性测量装置 人工智能 计算机视觉 计算机科学 姿势 实时计算 工程类 航空航天工程
作者
Yuanpeng Liu,Jingxuan Dong,Yida Li,Xiaoxi Gong,Jun Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-15 被引量:8
标识
DOI:10.1109/tim.2022.3198713
摘要

In the field of aircraft maintenance, regular inspection of fuselage surface during the aircraft life cycle is a vital task to ensure the aircraft quality and flight safety. Currently, the inspection task is generally carried out manually in an indoor hangar, which is with low efficiency and reliability. In this article, a novel system based on the unmanned aerial vehicle (UAV) is presented to achieve automated aircraft surface inspection efficiently. The hardware is established with a lightweight and low-cost flight platform, on which a sensor containing an inertial measurement unit (IMU) and a camera is equipped for UAV localization. A high-resolution camera is equipped to collect images of fuselage for defect detection. Our inspection framework is mainly composed of two modules: the UAV localization module and the defect detection module. The localization module is designed to estimate the relative pose between the UAV and the aircraft, providing the foundation for image positioning on the aircraft surface. The existing visual–inertial odometry (VIO) approach is adopted to implement the pose estimation. To reduce the large drifts caused by the VIO approach, a novel method is proposed to deploy precalibrated ArUco markers around the aircraft, which serve as external constraints for the VIO objective to realize joint optimization of the camera pose. In addition, an adaptive weighting method is proposed, which takes into consideration the recognition effect of markers to balance the external constraints. The defect detection module aims to detect defects on the fuselage surface from images captured by the high-resolution camera, which is implemented based on deep learning. To address the issue of detection on a few training samples, the transfer learning strategy is exploited to first pretrain the model on a public defect dataset and then fine-tune it on our collected aircraft defect dataset. After detecting the defects, the defective region is reflected on the fuselage surface through the UAV pose on the corresponding frame provided by the localization module, realizing the accurate defect localization. Experiments on both the simulation environment and real data demonstrate the superiority of our proposed external localization module and the effectiveness of the crack detection module.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
7秒前
9秒前
9秒前
21秒前
MchemG应助科研通管家采纳,获得20
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
22秒前
26秒前
劉浏琉完成签到,获得积分10
30秒前
很多奶油完成签到 ,获得积分10
50秒前
小蓝完成签到 ,获得积分10
54秒前
香蕉觅云应助Developing_human采纳,获得30
56秒前
Yatagarasu发布了新的文献求助10
1分钟前
wrl2023完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
香菜张完成签到,获得积分10
2分钟前
重庆森林应助科研通管家采纳,获得10
2分钟前
npknpk发布了新的文献求助10
2分钟前
npknpk完成签到,获得积分10
2分钟前
两个榴莲完成签到,获得积分0
3分钟前
3分钟前
gwbk完成签到,获得积分10
3分钟前
狂野的含烟完成签到 ,获得积分10
3分钟前
科研通AI6应助Yatagarasu采纳,获得10
3分钟前
4分钟前
拼搏的寒凝完成签到 ,获得积分10
4分钟前
4分钟前
奋斗一刀发布了新的文献求助10
4分钟前
酒渡完成签到,获得积分10
4分钟前
自由的雅旋完成签到 ,获得积分10
5分钟前
馅饼完成签到,获得积分10
5分钟前
5分钟前
5分钟前
搜集达人应助左白易采纳,获得10
5分钟前
5分钟前
5分钟前
左白易发布了新的文献求助10
6分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644884
求助须知:如何正确求助?哪些是违规求助? 4766194
关于积分的说明 15025829
捐赠科研通 4803241
什么是DOI,文献DOI怎么找? 2568097
邀请新用户注册赠送积分活动 1525568
关于科研通互助平台的介绍 1485121