Prediction models of vaginal birth after cesarean delivery: A systematic review

医学 阴道分娩 产科 怀孕 胎龄 体质指数 剖宫产 妇科 遗传学 生物 病理
作者
Bo Deng,Yan Li,Jia‐Yin Chen,Jun Guo,Jing Tan,Yang Yang,Ning Liu
出处
期刊:International Journal of Nursing Studies [Elsevier]
卷期号:135: 104359-104359 被引量:9
标识
DOI:10.1016/j.ijnurstu.2022.104359
摘要

Cesarean section rates are rising in the world. Women with a history of cesarean section will select a cesarean section at the next pregnancy. An objective and accurate prediction about the success rate of vaginal delivery after cesarean section can help women to reduce the complications caused by cesarean section, shorten the time spent in the hospital, and effectively plan medical resources.To systematically review and critically assess the existing prediction models of vaginal delivery after cesarean section.Some databases (PubMed, Web of Science, EMBASE, the Cochrane Library, Cumulative Index to Nursing and Allied Health Literature) were searched from 2000 to 2021 for studies regarding the prediction model of vaginal birth after cesarean delivery. The researchers successively conducted independent literature screening, data extraction and quality evaluation of the included literature, and then utilized the Prediction model Risk of Bias Assessment Tool to assess the methodological quality of the models in the included studies.A total of 33 studies were included, in which 20 prediction models were identified. Sixteen studies involved external validation of existing models (Grobman's models). In the 20 prediction models, 12 were internally validated, only three had external validation, and seven models were not explicitly reported, with the area under the curve ranging from 0.660 to 0.953; The most common predictors included in the model were body mass index and previous vaginal delivery, followed by maternal age, previous cesarean delivery indication, history of vaginal birth after cesarean, fetal weight, and Bishop's score, gestational age, history of vaginal birth after cesarean, maternal race; The prediction effect of Grobman's model was validated in multiple external populations; The majority of the studies(n = 27) had high risk of bias in the of the Prediction model Risk of Bias Assessment Tool.This review provides obstetricians and midwives with important information about the prediction models of vaginal birth after cesarean section, which has been reported optimistic predictive performance and acceptable predictive power. However, the majority of the development studies have methodological limitations, which may hinder the widely application of these models by obstetricians. Further studies are supposed to develop predictive models with low risk of bias, and conduct internal and external validation, providing pragmatic and practical predictions to obstetricians.CRD42022299048.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
skier发布了新的文献求助10
刚刚
balabala完成签到,获得积分20
刚刚
隐形曼青应助kb采纳,获得10
1秒前
yanyan发布了新的文献求助10
3秒前
繁笙完成签到 ,获得积分10
3秒前
3秒前
无言完成签到 ,获得积分10
3秒前
NONO完成签到 ,获得积分10
4秒前
星辰大海应助TT采纳,获得10
4秒前
6秒前
康康完成签到,获得积分10
6秒前
Xv完成签到,获得积分0
6秒前
9秒前
9秒前
香蕉觅云应助zfzf0422采纳,获得10
9秒前
10秒前
10秒前
李健应助爱听歌的向日葵采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
烟花应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得80
11秒前
所所应助科研通管家采纳,获得20
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得30
12秒前
婷婷发布了新的文献求助10
12秒前
zzt完成签到,获得积分10
14秒前
张小汉发布了新的文献求助30
15秒前
二十四发布了新的文献求助10
15秒前
赘婿应助junzilan采纳,获得10
15秒前
FashionBoy应助勤恳的雨文采纳,获得10
15秒前
aaa完成签到,获得积分10
16秒前
17秒前
11111完成签到,获得积分20
18秒前
仔wang完成签到,获得积分10
18秒前
20秒前
忘羡222发布了新的文献求助20
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824