The quantity-quality and gain-loss conversion pattern of green vegetation during urbanization reveals the importance of protecting natural forest ecosystems

城市化 环境科学 生态系统 环境资源管理 生态系统服务 城市森林 景观生态学 森林生态学 土地覆盖 土地利用 生态学 地理 林业 栖息地 生物
作者
Gaoyuan Yang,Yi Xiao,Liangjun Da,Zhaowu Yu
出处
期刊:Landscape Ecology [Springer Nature]
卷期号:37 (11): 2929-2945 被引量:4
标识
DOI:10.1007/s10980-022-01519-4
摘要

ContextsTo quantify ecosystem service (ES) changes caused by the dynamic of green vegetation (GV) during rapid urbanization, it is necessary to fully understand the ‘real’ conversion pattern of GV, yet key and ‘real’ conversion patterns within specific periods and contributions to GV quality remain poorly understood.ObjectivesWe use normalized difference vegetation index (NDVI) as a mediator to represent GV quality. Land cover transfer matrix (LCTM) and urban greenspace dynamic index (UGDI) were employed to fully understand GV dynamic from quantity-quality and gain-loss perspectives. The Pearl River Delta Metropolitan Region (PRDMR), one of the fastest urbanizing regions in the world, was selected as a case.ResultsFrom 1990 to 2015, built-up land, forests and grasslands has the most dynamic conversion, and also has the most significant impact on NDVI. The NDVI value of the newly-built forest (0.29) was much lower than that of the lost forest (0.5), which demonstrate the value and importance of existing natural forest ecosystem, as newly-built forest does not provide the same ESs (although newly-built forest generally has stronger carbon sequestration ability). Hence, we reconfirm and suggest that in regional ecological planning and management, in addition to creating new, higher quality GV, it is essential to protect existing natural forest ecosystems.ConclusionThe study proposed new and full perspectives, including quantity-quality and gain-loss angle of view, enhance the understanding of GV dynamic and can be used in other related analyses. Results also provide important theoretical bases for regional ecological planning and natural forest ecosystem protection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
唐唐发布了新的文献求助10
2秒前
test_20251231关注了科研通微信公众号
2秒前
Master完成签到,获得积分10
3秒前
善学以致用应助鲜艳的芹采纳,获得10
4秒前
overlood完成签到 ,获得积分10
4秒前
4秒前
爱因斯坦那个和我一样的科学家完成签到,获得积分10
5秒前
秦淮发布了新的文献求助10
5秒前
Jodie发布了新的文献求助10
6秒前
陶醉大侠完成签到,获得积分10
8秒前
HRXYZ完成签到,获得积分10
8秒前
梁jj完成签到,获得积分10
10秒前
sylvia完成签到,获得积分10
10秒前
小遇完成签到 ,获得积分10
11秒前
13秒前
16秒前
小言发布了新的文献求助10
17秒前
liu发布了新的文献求助30
19秒前
victor完成签到,获得积分10
20秒前
20秒前
Zx_1993应助hangboy采纳,获得30
21秒前
sqqq完成签到 ,获得积分10
22秒前
2953685951完成签到,获得积分10
23秒前
会飞的猪完成签到,获得积分10
24秒前
讨厌鬼完成签到,获得积分10
27秒前
夏未央完成签到,获得积分10
27秒前
小言完成签到,获得积分20
30秒前
MetaMysteria完成签到,获得积分10
32秒前
test_20251231发布了新的文献求助50
34秒前
科研通AI2S应助123456采纳,获得10
34秒前
34秒前
胡蝶完成签到 ,获得积分10
36秒前
无情的井完成签到,获得积分10
36秒前
故事细腻完成签到 ,获得积分10
37秒前
tangz发布了新的文献求助10
37秒前
张姚发布了新的文献求助10
37秒前
完美世界应助XIEQ采纳,获得10
38秒前
whoKnows应助Tom采纳,获得20
40秒前
cc发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866