Noise-Robust Vibration Phase Compensation for Satellite ISAL Imaging by Frequency Descent Minimum Entropy Optimization

计算机科学 算法 振动 梯度下降 傅里叶变换 数学 人工神经网络 人工智能 声学 物理 数学分析
作者
Xuan Wang,Liang Guo,Yachao Li,Liang Han,Qing Xu,Dan Jing,Yachao Li,Mengdao Xing
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:4
标识
DOI:10.1109/tgrs.2022.3204077
摘要

Inverse synthetic aperture ladar (ISAL) can perform high-resolution imaging for satellites. However, due to the short wavelength of the laser, satellite micro-vibration will introduce space-variant vibration phase error (SVVPE) and space-invariant vibration phase error (SIVVPE) in the echoes, which seriously blur the ISAL image. In this paper, we propose a noise-robust vibration phase compensation algorithm to accurately estimate and correct these two types of vibration phase errors by frequency descent minimum entropy optimization. Firstly, considering the characteristics of the micro-vibration of satellites, we establish a novel phase error model based on the Fourier series theory, which only contains low-frequency vibration components. The estimation of the phase errors is then translated into the estimation of the model's Fourier coefficients, which can be achieved by a multi-dimensional minimum entropy optimization. After that, a frequency descent method (FD) is proposed to transform the multi-dimensional optimization into a group of two-dimensional optimizations so that the proposed algorithm can achieve monotonic iterative convergence. In addition, we introduce a solution space adaptive reduction operation to reduce the computational burden when solving the two-dimensional minimum entropy optimizations by the genetic algorithm (GA) to obtain the global optimal solution. Finally, experiments based on the simulated data and the real measured data confirm the effectiveness of the proposed algorithm. Compared with the traditional methods, the proposed algorithm achieves higher phase error estimation accuracy and better image quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助哈哈哈哈哈采纳,获得10
1秒前
5秒前
小马甲应助向日葵采纳,获得10
5秒前
CodeCraft应助玖Nine采纳,获得10
8秒前
8秒前
bkagyin应助迷路千青采纳,获得30
9秒前
federish完成签到 ,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
YamDaamCaa应助科研通管家采纳,获得30
11秒前
11秒前
Akim应助科研通管家采纳,获得10
11秒前
Rondab应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
Rondab应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Rondab应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
Rondab应助科研通管家采纳,获得10
11秒前
11秒前
端庄的蜗牛完成签到,获得积分10
13秒前
陶醉的熊完成签到,获得积分10
15秒前
15秒前
cocolu给cocolu的求助进行了留言
18秒前
SciGPT应助八森木采纳,获得10
18秒前
向日葵发布了新的文献求助10
19秒前
太阳完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
23秒前
book卟完成签到 ,获得积分10
23秒前
完美世界应助qqqq采纳,获得10
26秒前
乐乐应助虚幻的不愁采纳,获得10
27秒前
27秒前
Camellia完成签到,获得积分10
28秒前
29秒前
今天学习了吗完成签到 ,获得积分10
30秒前
XFaning完成签到 ,获得积分20
33秒前
33秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167