Noise-Robust Vibration Phase Compensation for Satellite ISAL Imaging by Frequency Descent Minimum Entropy Optimization

计算机科学 算法 振动 梯度下降 傅里叶变换 数学 人工神经网络 人工智能 声学 物理 数学分析
作者
Xuan Wang,Liang Guo,Yachao Li,Liang Han,Qing Xu,Dan Jing,Yachao Li,Mengdao Xing
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:4
标识
DOI:10.1109/tgrs.2022.3204077
摘要

Inverse synthetic aperture ladar (ISAL) can perform high-resolution imaging for satellites. However, due to the short wavelength of the laser, satellite micro-vibration will introduce space-variant vibration phase error (SVVPE) and space-invariant vibration phase error (SIVVPE) in the echoes, which seriously blur the ISAL image. In this paper, we propose a noise-robust vibration phase compensation algorithm to accurately estimate and correct these two types of vibration phase errors by frequency descent minimum entropy optimization. Firstly, considering the characteristics of the micro-vibration of satellites, we establish a novel phase error model based on the Fourier series theory, which only contains low-frequency vibration components. The estimation of the phase errors is then translated into the estimation of the model's Fourier coefficients, which can be achieved by a multi-dimensional minimum entropy optimization. After that, a frequency descent method (FD) is proposed to transform the multi-dimensional optimization into a group of two-dimensional optimizations so that the proposed algorithm can achieve monotonic iterative convergence. In addition, we introduce a solution space adaptive reduction operation to reduce the computational burden when solving the two-dimensional minimum entropy optimizations by the genetic algorithm (GA) to obtain the global optimal solution. Finally, experiments based on the simulated data and the real measured data confirm the effectiveness of the proposed algorithm. Compared with the traditional methods, the proposed algorithm achieves higher phase error estimation accuracy and better image quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇的冰姬完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
tony完成签到,获得积分10
3秒前
Uynaux发布了新的文献求助30
3秒前
SONG完成签到,获得积分10
3秒前
SYLH应助干秋白采纳,获得10
4秒前
4秒前
风雨1210发布了新的文献求助10
5秒前
文艺书雪完成签到 ,获得积分10
5秒前
独行侠完成签到,获得积分10
5秒前
6秒前
我测你码发布了新的文献求助10
6秒前
又要起名字完成签到,获得积分10
6秒前
6秒前
6秒前
damian完成签到,获得积分10
7秒前
LiShin发布了新的文献求助10
7秒前
渝州人应助凤凰山采纳,获得10
8秒前
sweetbearm应助凤凰山采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
yizhiGao应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
顾矜应助随机起的名采纳,获得10
8秒前
NN应助科研通管家采纳,获得10
8秒前
pinging应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
yizhiGao应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得20
9秒前
小小旋风应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
敬老院N号应助科研通管家采纳,获得30
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794