鉴别器
发电机(电路理论)
计算机科学
公制(单位)
变化(天文学)
理论(学习稳定性)
质量(理念)
人工智能
构造(python库)
简单(哲学)
图像(数学)
竞赛(生物学)
钥匙(锁)
生成语法
模式识别(心理学)
机器学习
电信
工程类
物理
哲学
生态学
认识论
功率(物理)
探测器
程序设计语言
生物
量子力学
天体物理学
计算机安全
运营管理
作者
Tero Karras,Timo Aila,Samuli Laine,Jaakko Lehtinen
出处
期刊:Cornell University - arXiv
日期:2017-01-01
被引量:2969
标识
DOI:10.48550/arxiv.1710.10196
摘要
We describe a new training methodology for generative adversarial networks. The key idea is to grow both the generator and discriminator progressively: starting from a low resolution, we add new layers that model increasingly fine details as training progresses. This both speeds the training up and greatly stabilizes it, allowing us to produce images of unprecedented quality, e.g., CelebA images at 1024^2. We also propose a simple way to increase the variation in generated images, and achieve a record inception score of 8.80 in unsupervised CIFAR10. Additionally, we describe several implementation details that are important for discouraging unhealthy competition between the generator and discriminator. Finally, we suggest a new metric for evaluating GAN results, both in terms of image quality and variation. As an additional contribution, we construct a higher-quality version of the CelebA dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI