Long-term exposure to ambient air pollution and greenness in relation to pulmonary tuberculosis in China: A nationwide modelling study

入射(几何) 相对风险 空气污染 置信区间 环境卫生 医学 肺结核 内科学 病理 生物 生态学 光学 物理
作者
Sui Zhu,Ya Wu,Qian Wang,Lijie Gao,Liang Chen,Fangfang Zeng,Pan Yang,Yanhui Gao,Jun Yang
出处
期刊:Environmental Research [Elsevier]
卷期号:214: 114100-114100 被引量:23
标识
DOI:10.1016/j.envres.2022.114100
摘要

Previous studies have attempted to clarify the relationship between the occurrence of pulmonary tuberculosis (PTB) and exposure to air pollutants. However, evidence from multi-centres, particularly at the national level, is scarce, and no study has examined the modifying effect of greenness on air pollution–TB associations. In this study, we examined the association between long-term exposure to ambient air pollutants (PM10 p.m.2.5, and O3) and monthly PTB or smear-positive pulmonary tuberculosis (SPPTB) incidence to further evaluate whether these associations were affected by greenness in mainland China using a two-stage analytic procedure. PM2.5 was positively associated with both PTB and SPPTB incidence, with relative risk (RR) of 1.12 (95% confidence interval [CI]: 1.03, 1.22) and 1.08 (95% CI: 1.02, 1.10) per 10 μg/m3 increase, respectively. Furthermore, PM10 was positively associated with PTB incidence, with RR of 1.07 (95% CI: 1.01, 1.13). However, O3 was not associated with the monthly incidence of PTB or SPPTB. The normalized difference vegetation index (NDVI) exhibited a modifying effect on the association between PM2.5 exposure and SPPTB incidence in northern areas, with RR of 1.16 (95% CI: 1.03, 1.31) in lower mean annual NDVI areas than in the higher areas (RR = 0.98, 95% CI: 0.87, 1.09). This nationwide analysis indicated that NDVI could reduce the effect of air pollutants on TB incidence particularly in the northern areas. Long-term exposure to particulate matter (PM) may increase the occurrence of PTB or SPPTB in China, and further studies involving larger numbers of SPPTB cases are required to confirm the effects of PM exposure on SPPTB incidence in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
17完成签到,获得积分10
1秒前
1秒前
刘杭完成签到,获得积分10
1秒前
1秒前
开心的夏蓉完成签到,获得积分10
1秒前
2秒前
Ava应助忐忑的以旋采纳,获得10
2秒前
潘若溪发布了新的文献求助10
2秒前
3秒前
123发布了新的文献求助10
3秒前
飘拂草完成签到,获得积分10
3秒前
17发布了新的文献求助10
3秒前
3秒前
儒雅猕猴桃完成签到,获得积分10
3秒前
顾文发布了新的文献求助10
3秒前
3秒前
3秒前
myth发布了新的文献求助10
5秒前
5秒前
5秒前
星星完成签到,获得积分10
5秒前
LiuJG发布了新的文献求助10
5秒前
IVY1300完成签到,获得积分10
6秒前
烂漫听筠发布了新的文献求助10
6秒前
科研通AI2S应助小白采纳,获得10
6秒前
FBQZDJG2122完成签到,获得积分10
7秒前
7秒前
裘问薇发布了新的文献求助10
7秒前
7秒前
Wendy完成签到,获得积分10
7秒前
光亮妙之发布了新的文献求助10
7秒前
LYY完成签到,获得积分10
8秒前
michael发布了新的文献求助10
8秒前
甜甜醉波发布了新的文献求助10
8秒前
刘子豪发布了新的文献求助10
8秒前
小二郎应助如栩采纳,获得10
8秒前
难过盼海完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707949
求助须知:如何正确求助?哪些是违规求助? 5186552
关于积分的说明 15252222
捐赠科研通 4861091
什么是DOI,文献DOI怎么找? 2609200
邀请新用户注册赠送积分活动 1559900
关于科研通互助平台的介绍 1517670