DDDQN‐TS: A task scheduling and load balancing method based on optimized deep reinforcement learning in heterogeneous computing environment

计算机科学 强化学习 负载平衡(电力) 调度(生产过程) 分布式计算 马尔可夫决策过程 作业车间调度 动态优先级调度 人工智能 马尔可夫过程 数学优化 地铁列车时刻表 几何学 操作系统 统计 网格 数学
作者
Changyong Sun,Tan Yang,Youxun Lei
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (11): 9138-9172 被引量:4
标识
DOI:10.1002/int.22983
摘要

International Journal of Intelligent SystemsVolume 37, Issue 11 p. 9138-9172 RESEARCH ARTICLE DDDQN-TS: A task scheduling and load balancing method based on optimized deep reinforcement learning in heterogeneous computing environment Changyong Sun, Changyong Sun orcid.org/0000-0003-3620-9175 State Key Laboratory of Networking and Switching Technology, School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing, ChinaSearch for more papers by this authorTan Yang, Corresponding Author Tan Yang tyang@bupt.edu.cn State Key Laboratory of Networking and Switching Technology, School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing, China Correspondence Tan Yang, State Key Laboratory of Networking and Switching Technology, School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Room 404, Scientific Research Building, Building 10, Xitucheng Road, Haidian District, 100876 Beijing, China. Email: tyang@bupt.edu.cnSearch for more papers by this authorYouxun Lei, Youxun Lei State Key Laboratory of Networking and Switching Technology, School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing, ChinaSearch for more papers by this author Changyong Sun, Changyong Sun orcid.org/0000-0003-3620-9175 State Key Laboratory of Networking and Switching Technology, School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing, ChinaSearch for more papers by this authorTan Yang, Corresponding Author Tan Yang tyang@bupt.edu.cn State Key Laboratory of Networking and Switching Technology, School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing, China Correspondence Tan Yang, State Key Laboratory of Networking and Switching Technology, School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Room 404, Scientific Research Building, Building 10, Xitucheng Road, Haidian District, 100876 Beijing, China. Email: tyang@bupt.edu.cnSearch for more papers by this authorYouxun Lei, Youxun Lei State Key Laboratory of Networking and Switching Technology, School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing, ChinaSearch for more papers by this author First published: 08 August 2022 https://doi.org/10.1002/int.22983Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract Task scheduling and load balancing problem of heterogeneous computing environment (HCE) is getting more and more attention these days and has become a research hotspot in this field. The task scheduling and load balancing problem of heterogeneous environment, which refers to assigning a set of tasks to a specific set of machines with different hardware and different computing performance with the goal of minimizing task processing time and keeping load balance among machines, has been proved to be an NP-complete problem. The development of artificial intelligence provides new ideas to solve this problem. In this paper, we propose a novel task scheduling and load balancing method based on optimized deep reinforcement learning in HCE. First, we formulate task scheduling problem as a Markov decision process and then adopt a dueling double deep Q-learning network to search the optimal task allocation solution. Then we use two well-known large-scale cluster data sets Google Cloud Jobs data set and Alibaba Cluster Trace data set to validate our approach. The experimental results show that compared with other existing solutions, our proposed method can achieve much shorter task response time and better load balancing effect. CONFLICT OF INTEREST The authors declare no conflict of interest. Open Research DATA AVAILABILITY STATEMENT The data that support the findings of this study are openly available in Google Cloud Jobs (GoCJ) Data set at https://data.mendeley.com/datasets/b7bp6xhrcd, by Zhou.21 The data that support the findings of this study are openly available in Alibaba Cluster Trace v2018 at https://github.com/Alibaba/clusterdata/tree/master/cluster-trace-v2018, by Tong et al.11 Volume37, Issue11November 2022Pages 9138-9172 RelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李佳倩发布了新的文献求助10
刚刚
pain豆先生完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
今后应助一一采纳,获得10
2秒前
无心的若山完成签到,获得积分10
2秒前
3秒前
cicy完成签到,获得积分10
3秒前
4秒前
4秒前
秋秋完成签到,获得积分10
4秒前
4秒前
WCDZD完成签到,获得积分10
5秒前
酷波er应助可靠豌豆采纳,获得10
5秒前
5秒前
5秒前
开心元霜发布了新的文献求助10
5秒前
酷波er应助危机的羽毛采纳,获得10
6秒前
6秒前
6秒前
Una发布了新的文献求助10
6秒前
6秒前
普萘洛尔发布了新的文献求助10
7秒前
一颗煤炭完成签到 ,获得积分10
7秒前
8秒前
L。发布了新的文献求助10
8秒前
胡萝卜发布了新的文献求助10
8秒前
赵十七完成签到 ,获得积分10
8秒前
小艾冂学完成签到,获得积分20
9秒前
大意的雨双完成签到 ,获得积分10
10秒前
An.发布了新的文献求助10
10秒前
11秒前
刚好夏天完成签到 ,获得积分10
11秒前
wangyu发布了新的文献求助10
11秒前
bslbsl发布了新的文献求助50
12秒前
YNHN发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553714
求助须知:如何正确求助?哪些是违规求助? 3129536
关于积分的说明 9382934
捐赠科研通 2828669
什么是DOI,文献DOI怎么找? 1555104
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267