A novel multi-set differential pulse voltammetry technique for improving precision in electrochemical sensing

微分脉冲伏安法 循环伏安法 采样(信号处理) 计算机科学 校准 准确度和精密度 生物系统 化学 电化学 数学 电极 统计 计算机视觉 生物 滤波器(信号处理) 物理化学
作者
Bhuwan Kashyap,Ratnesh Kumar
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:216: 114628-114628 被引量:20
标识
DOI:10.1016/j.bios.2022.114628
摘要

Over the years, electrochemical sensors have achieved high levels of sensitivity due to advancements in electrical circuits and systems, and calibration standards. However, little has been explored towards developing ways to minimize random errors and improve the precision of electrochemical sensors. In this work, a novel electrochemical method derived from differential pulse voltammetry termed multi-set differential pulse voltammetry (MS-DPV) is proposed with the goal of reducing random errors in chemical- and bio-sensors and thereby improve precision. The proposed MS-DPV improves precision without the need to replicate measurements. Therefore, saving energy use, time consumed, and/or materials required. The method is especially suited for portable or in-field sensing solutions that have strict constraints on sampling, time and energy use. To realize the proposed method, a custom designed plug-and-play-type electrochemical sensing system was employed which was then used for detecting salicylic acid (SA). SA is a key phytohormone deployed during defense responses in plants against biotic stresses. Additionally, SA is widely used in the pharmaceutical and healthcare industry due to its anti-inflammatory and analgesic properties. Using a "4-set-DPV", an error reduction of up to 12% was observed in SA detection when compared to conventional differential pulse voltammetry. In general, the error variance reduces linearly with the number of readings taken in a single scan of the proposed MS-DPV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC发布了新的文献求助10
刚刚
宇少爱学习哟完成签到,获得积分10
1秒前
1秒前
Amber应助曹梦梦采纳,获得10
1秒前
科研通AI5应助平淡南霜采纳,获得10
2秒前
小刘不笨发布了新的文献求助10
2秒前
2秒前
GWM发布了新的文献求助30
2秒前
MADKAI发布了新的文献求助10
2秒前
novia完成签到,获得积分10
2秒前
东郭南松发布了新的文献求助10
3秒前
经法发布了新的文献求助10
3秒前
韭菜盒子发布了新的文献求助10
3秒前
donk完成签到 ,获得积分10
4秒前
传奇3应助lx采纳,获得10
4秒前
5秒前
华仔应助bluer采纳,获得10
5秒前
poo1900完成签到,获得积分10
5秒前
ssx完成签到,获得积分10
5秒前
5秒前
xuanxuan完成签到,获得积分10
5秒前
CyrusSo524完成签到,获得积分10
5秒前
5秒前
格格星完成签到,获得积分10
6秒前
jackish完成签到,获得积分10
6秒前
6秒前
6秒前
英姑应助温柔若采纳,获得10
6秒前
7秒前
熠熠完成签到,获得积分10
9秒前
wangping发布了新的文献求助10
9秒前
李爱国应助小豆芽儿采纳,获得10
9秒前
10秒前
10秒前
FFF完成签到,获得积分20
11秒前
学术小黄完成签到,获得积分10
11秒前
么系么系发布了新的文献求助10
11秒前
12秒前
小洪俊熙完成签到,获得积分10
13秒前
123完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678