A novel multi-set differential pulse voltammetry technique for improving precision in electrochemical sensing

微分脉冲伏安法 循环伏安法 采样(信号处理) 计算机科学 校准 准确度和精密度 生物系统 化学 电化学 数学 电极 统计 计算机视觉 物理化学 滤波器(信号处理) 生物
作者
Bhuwan Kashyap,Ratnesh Kumar
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:216: 114628-114628 被引量:20
标识
DOI:10.1016/j.bios.2022.114628
摘要

Over the years, electrochemical sensors have achieved high levels of sensitivity due to advancements in electrical circuits and systems, and calibration standards. However, little has been explored towards developing ways to minimize random errors and improve the precision of electrochemical sensors. In this work, a novel electrochemical method derived from differential pulse voltammetry termed multi-set differential pulse voltammetry (MS-DPV) is proposed with the goal of reducing random errors in chemical- and bio-sensors and thereby improve precision. The proposed MS-DPV improves precision without the need to replicate measurements. Therefore, saving energy use, time consumed, and/or materials required. The method is especially suited for portable or in-field sensing solutions that have strict constraints on sampling, time and energy use. To realize the proposed method, a custom designed plug-and-play-type electrochemical sensing system was employed which was then used for detecting salicylic acid (SA). SA is a key phytohormone deployed during defense responses in plants against biotic stresses. Additionally, SA is widely used in the pharmaceutical and healthcare industry due to its anti-inflammatory and analgesic properties. Using a "4-set-DPV", an error reduction of up to 12% was observed in SA detection when compared to conventional differential pulse voltammetry. In general, the error variance reduces linearly with the number of readings taken in a single scan of the proposed MS-DPV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq完成签到,获得积分10
刚刚
Jarvi发布了新的文献求助10
刚刚
烤鸭完成签到 ,获得积分10
1秒前
zimablue发布了新的文献求助10
1秒前
祝愿完成签到,获得积分10
2秒前
旦皋发布了新的文献求助10
2秒前
2秒前
烟花应助啵萝味儿的奶盖采纳,获得10
3秒前
vincentbioinfo完成签到,获得积分10
3秒前
WJH发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
5秒前
12we完成签到 ,获得积分10
6秒前
6秒前
7秒前
学不懂数学应助茶茶采纳,获得20
7秒前
隐形曼青应助旧辞采纳,获得10
7秒前
何佳完成签到,获得积分10
8秒前
烟花应助coco采纳,获得10
8秒前
小晶完成签到,获得积分10
8秒前
zimablue完成签到,获得积分10
9秒前
慕青应助范先生采纳,获得10
9秒前
zzz完成签到,获得积分10
10秒前
11秒前
海盗船长完成签到,获得积分10
11秒前
等待寄云完成签到 ,获得积分10
11秒前
酷波er应助王冉冉采纳,获得10
12秒前
lcjynwe完成签到,获得积分10
13秒前
新奇完成签到 ,获得积分10
13秒前
Misty_发布了新的文献求助10
13秒前
iNk应助不会取名字采纳,获得20
13秒前
Orange应助Hannes采纳,获得10
13秒前
15秒前
多多少少忖测的情完成签到,获得积分10
15秒前
小马甲应助lx采纳,获得10
15秒前
16秒前
阔达冰兰发布了新的文献求助10
16秒前
GAO完成签到,获得积分10
16秒前
yy发布了新的文献求助10
17秒前
17秒前
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048