A novel multi-set differential pulse voltammetry technique for improving precision in electrochemical sensing

微分脉冲伏安法 循环伏安法 采样(信号处理) 计算机科学 校准 准确度和精密度 生物系统 化学 电化学 数学 电极 统计 计算机视觉 物理化学 滤波器(信号处理) 生物
作者
Bhuwan Kashyap,Ratnesh Kumar
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:216: 114628-114628 被引量:32
标识
DOI:10.1016/j.bios.2022.114628
摘要

Over the years, electrochemical sensors have achieved high levels of sensitivity due to advancements in electrical circuits and systems, and calibration standards. However, little has been explored towards developing ways to minimize random errors and improve the precision of electrochemical sensors. In this work, a novel electrochemical method derived from differential pulse voltammetry termed multi-set differential pulse voltammetry (MS-DPV) is proposed with the goal of reducing random errors in chemical- and bio-sensors and thereby improve precision. The proposed MS-DPV improves precision without the need to replicate measurements. Therefore, saving energy use, time consumed, and/or materials required. The method is especially suited for portable or in-field sensing solutions that have strict constraints on sampling, time and energy use. To realize the proposed method, a custom designed plug-and-play-type electrochemical sensing system was employed which was then used for detecting salicylic acid (SA). SA is a key phytohormone deployed during defense responses in plants against biotic stresses. Additionally, SA is widely used in the pharmaceutical and healthcare industry due to its anti-inflammatory and analgesic properties. Using a "4-set-DPV", an error reduction of up to 12% was observed in SA detection when compared to conventional differential pulse voltammetry. In general, the error variance reduces linearly with the number of readings taken in a single scan of the proposed MS-DPV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
哈哈呢么发布了新的文献求助10
2秒前
南京发布了新的文献求助10
2秒前
2秒前
GC发布了新的文献求助10
3秒前
3秒前
合适忆山完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6.1应助看不懂采纳,获得10
4秒前
4秒前
AAA建材王哥完成签到,获得积分10
5秒前
李爱国应助狂野的南松采纳,获得10
5秒前
华仔应助wsysweet采纳,获得10
6秒前
Zoe发布了新的文献求助10
6秒前
小脚丫完成签到,获得积分10
7秒前
执着谷兰发布了新的文献求助20
7秒前
7秒前
7秒前
7秒前
fengjingjing发布了新的文献求助10
7秒前
123发布了新的文献求助10
7秒前
8秒前
old赵应助cL采纳,获得10
8秒前
烟花应助轻松新之采纳,获得10
8秒前
9秒前
善学以致用应助147采纳,获得10
10秒前
大模型应助Chara_kara采纳,获得10
10秒前
11秒前
科研狼完成签到,获得积分10
11秒前
执着乐双完成签到,获得积分10
11秒前
缥缈傥完成签到,获得积分10
11秒前
12秒前
藏鸟发布了新的文献求助30
12秒前
cjypdf发布了新的文献求助10
12秒前
12秒前
左丘世立发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078