A novel multi-set differential pulse voltammetry technique for improving precision in electrochemical sensing

微分脉冲伏安法 循环伏安法 采样(信号处理) 计算机科学 校准 准确度和精密度 生物系统 化学 电化学 数学 电极 统计 计算机视觉 物理化学 滤波器(信号处理) 生物
作者
Bhuwan Kashyap,Ratnesh Kumar
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:216: 114628-114628 被引量:32
标识
DOI:10.1016/j.bios.2022.114628
摘要

Over the years, electrochemical sensors have achieved high levels of sensitivity due to advancements in electrical circuits and systems, and calibration standards. However, little has been explored towards developing ways to minimize random errors and improve the precision of electrochemical sensors. In this work, a novel electrochemical method derived from differential pulse voltammetry termed multi-set differential pulse voltammetry (MS-DPV) is proposed with the goal of reducing random errors in chemical- and bio-sensors and thereby improve precision. The proposed MS-DPV improves precision without the need to replicate measurements. Therefore, saving energy use, time consumed, and/or materials required. The method is especially suited for portable or in-field sensing solutions that have strict constraints on sampling, time and energy use. To realize the proposed method, a custom designed plug-and-play-type electrochemical sensing system was employed which was then used for detecting salicylic acid (SA). SA is a key phytohormone deployed during defense responses in plants against biotic stresses. Additionally, SA is widely used in the pharmaceutical and healthcare industry due to its anti-inflammatory and analgesic properties. Using a "4-set-DPV", an error reduction of up to 12% was observed in SA detection when compared to conventional differential pulse voltammetry. In general, the error variance reduces linearly with the number of readings taken in a single scan of the proposed MS-DPV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
晴天完成签到,获得积分10
刚刚
坦率无剑完成签到,获得积分10
刚刚
1秒前
2秒前
HuangYu关注了科研通微信公众号
3秒前
firefly完成签到 ,获得积分10
3秒前
gjx完成签到 ,获得积分10
3秒前
yangshuai发布了新的文献求助10
5秒前
晴天发布了新的文献求助10
6秒前
carbonhan完成签到,获得积分10
8秒前
无极微光应助eden采纳,获得20
10秒前
KKK完成签到,获得积分20
10秒前
ming完成签到,获得积分10
11秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
Lny应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
pluto应助科研通管家采纳,获得10
13秒前
Lny应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
pluto应助科研通管家采纳,获得10
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
Lny应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
HOAN应助科研通管家采纳,获得30
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978