A Dynamic-Varying Parameter Enhanced ZNN Model for Solving Time-Varying Complex-Valued Tensor Inversion With Its Application to Image Encryption

稳健性(进化) 混乱的 计算机科学 数学 数学优化 算法 应用数学 控制理论(社会学) 人工智能 生物化学 基因 化学 控制(管理)
作者
Lin Xiao,Xiaopeng Li,Pei Cao,Yongjun He,Wensheng Tang,Jichun Li,Yaonan Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/tnnls.2023.3270563
摘要

Time-varying complex-valued tensor inverse (TVCTI) is a public problem worthy of being studied, while numerical solutions for the TVCTI are not effective enough. This work aims to find the accurate solution to the TVCTI using zeroing neural network (ZNN), which is an effective tool in terms of solving time-varying problems and is improved in this article to solve the TVCTI problem for the first time. Based on the design idea of ZNN, an error-adaptive dynamic parameter and a new enhanced segmented signum exponential activation function (ESS-EAF) are first designed and applied to the ZNN. Then a dynamic-varying parameter-enhanced ZNN (DVPEZNN) model is proposed to solve the TVCTI problem. The convergence and robustness of the DVPEZNN model are theoretically analyzed and discussed. In order to highlight better convergence and robustness of the DVPEZNN model, it is compared with four varying-parameter ZNN models in the illustrative example. The results show that the DVPEZNN model has better convergence and robustness than the other four ZNN models in different situations. In addition, the state solution sequence generated by the DVPEZNN model in the process of solving the TVCTI cooperates with the chaotic system and deoxyribonucleic acid (DNA) coding rules to obtain the chaotic-ZNN-DNA (CZD) image encryption algorithm, which can encrypt and decrypt images with good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑的夜发布了新的文献求助10
刚刚
鳗鱼不尤完成签到,获得积分10
刚刚
1秒前
Gryff完成签到 ,获得积分10
1秒前
子车茗应助孟韩采纳,获得10
1秒前
wangkai完成签到,获得积分10
2秒前
monere应助小胡采纳,获得10
3秒前
Enchanted发布了新的文献求助10
4秒前
5秒前
7秒前
Orange应助1111111111111采纳,获得10
7秒前
wsq完成签到,获得积分10
7秒前
111完成签到,获得积分20
7秒前
han发布了新的文献求助10
8秒前
叁壹粑粑完成签到,获得积分10
9秒前
9秒前
123456完成签到,获得积分10
9秒前
Hello应助行者采纳,获得10
9秒前
没名字发布了新的文献求助10
10秒前
xjcy应助linnnn采纳,获得10
11秒前
曾经的少年完成签到,获得积分10
11秒前
段蕤完成签到 ,获得积分10
14秒前
LXXue发布了新的文献求助10
14秒前
GGGGEEEE应助快乐的大有采纳,获得10
15秒前
15秒前
寒食应助xun采纳,获得20
16秒前
阳光水壶完成签到 ,获得积分10
16秒前
上官若男应助cloud采纳,获得10
17秒前
17秒前
科研通AI2S应助千年雪松采纳,获得10
18秒前
19秒前
研友_LOoomL发布了新的文献求助10
20秒前
天天完成签到,获得积分10
21秒前
丰富傥发布了新的文献求助10
21秒前
行舟完成签到 ,获得积分10
22秒前
Oliverq1018应助科研通管家采纳,获得20
22秒前
23秒前
Ava应助科研通管家采纳,获得30
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266784
求助须知:如何正确求助?哪些是违规求助? 2906482
关于积分的说明 8338026
捐赠科研通 2576794
什么是DOI,文献DOI怎么找? 1400728
科研通“疑难数据库(出版商)”最低求助积分说明 654929
邀请新用户注册赠送积分活动 633810