Deep hybrid neural net (DHN-Net) for minute-level day-ahead solar and wind power forecast in a decarbonized power system

风力发电 可再生能源 太阳能 气象学 电力系统 环境科学 太阳能 混合动力 计算机科学 功率(物理) 工程类 电气工程 物理 量子力学
作者
Olusola Bamisile,Dongsheng Cai,Humphrey Adun,Chukwuebuka Joseph Ejiyi,Olufunso Dayo Alowolodu,Benjamin O. Ezurike,Qi Huang
出处
期刊:Energy Reports [Elsevier]
卷期号:9: 1163-1172 被引量:5
标识
DOI:10.1016/j.egyr.2023.05.229
摘要

The need to reduce global carbon emissions has led to a significant increase in clean energy globally. While renewable energy penetration into energy grids and power systems is increasing in many countries, the intermittency and stochastic nature of wind and solar energy resources is still a major challenge. These can affect the safety, stability, and reliability of the energy grid. In existing works of literature, the forecast and prediction of wind energy, solar power, wind power, and solar energy with various models have been considered independently. However, with the rise in solar power and wind power penetration, there exists a gap in literature on the development of models that can simultaneously forecast solar and wind power production. In this paper, two deep hybrid neural networks (DHN-Net) models are developed for the simultaneous forecast of wind and solar power. The novelty of this study is further strengthened as a minute-level timestep is considered for the application of the models developed. The models are trained and tested with data collected from Zone 1 of four different power system operators in the USA. The two DHN-Net models are built on the foundation of artificial, convolutional, and recurrent neural networks (ANN, CNN, and RNN). Results from this study show that the two DHN-Nets can accurately forecast solar and wind power with an R-squared (r2) value of 0.9915, RMSE of 0.01920, and MAE of 0.00736 for data collected from PJM_Zone1. The DHN-Net models recorded a better performance when compared to the benchmark results in literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zerolii完成签到,获得积分10
刚刚
充电宝应助qwer采纳,获得10
1秒前
白衣修身发布了新的文献求助10
1秒前
1秒前
老马完成签到,获得积分10
2秒前
2秒前
wuyao完成签到,获得积分10
3秒前
优秀丹南完成签到,获得积分10
3秒前
4秒前
FashionBoy应助科研好楠采纳,获得10
4秒前
优秀丹南发布了新的文献求助10
5秒前
风中小刺猬完成签到,获得积分10
6秒前
jkhjkhj发布了新的文献求助10
6秒前
西宁完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
icecream完成签到,获得积分20
10秒前
vergegung完成签到,获得积分10
10秒前
11秒前
宝铭YUAN完成签到,获得积分10
12秒前
哇哦哦完成签到,获得积分20
13秒前
vergegung发布了新的文献求助30
14秒前
顾矜应助jkhjkhj采纳,获得10
14秒前
14秒前
酷炫的__发布了新的文献求助10
15秒前
15秒前
Akim应助gi采纳,获得10
16秒前
xixixi发布了新的文献求助10
16秒前
sevenhill应助露露采纳,获得10
16秒前
17秒前
搜集达人应助大灯泡采纳,获得10
18秒前
清脆香露完成签到,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
石石刘发布了新的文献求助20
20秒前
vv完成签到 ,获得积分10
21秒前
优秀的人发布了新的文献求助10
21秒前
22秒前
大模型应助yy采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636950
求助须知:如何正确求助?哪些是违规求助? 4742342
关于积分的说明 14997109
捐赠科研通 4795139
什么是DOI,文献DOI怎么找? 2561855
邀请新用户注册赠送积分活动 1521357
关于科研通互助平台的介绍 1481458