Deep hybrid neural net (DHN-Net) for minute-level day-ahead solar and wind power forecast in a decarbonized power system

风力发电 可再生能源 太阳能 气象学 电力系统 环境科学 太阳能 混合动力 计算机科学 功率(物理) 工程类 电气工程 量子力学 物理
作者
Olusola Bamisile,Dongsheng Cai,Humphrey Adun,Chukwuebuka Joseph Ejiyi,Olufunso Dayo Alowolodu,Benjamin O. Ezurike,Qi Huang
出处
期刊:Energy Reports [Elsevier]
卷期号:9: 1163-1172 被引量:5
标识
DOI:10.1016/j.egyr.2023.05.229
摘要

The need to reduce global carbon emissions has led to a significant increase in clean energy globally. While renewable energy penetration into energy grids and power systems is increasing in many countries, the intermittency and stochastic nature of wind and solar energy resources is still a major challenge. These can affect the safety, stability, and reliability of the energy grid. In existing works of literature, the forecast and prediction of wind energy, solar power, wind power, and solar energy with various models have been considered independently. However, with the rise in solar power and wind power penetration, there exists a gap in literature on the development of models that can simultaneously forecast solar and wind power production. In this paper, two deep hybrid neural networks (DHN-Net) models are developed for the simultaneous forecast of wind and solar power. The novelty of this study is further strengthened as a minute-level timestep is considered for the application of the models developed. The models are trained and tested with data collected from Zone 1 of four different power system operators in the USA. The two DHN-Net models are built on the foundation of artificial, convolutional, and recurrent neural networks (ANN, CNN, and RNN). Results from this study show that the two DHN-Nets can accurately forecast solar and wind power with an R-squared (r2) value of 0.9915, RMSE of 0.01920, and MAE of 0.00736 for data collected from PJM_Zone1. The DHN-Net models recorded a better performance when compared to the benchmark results in literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
liuyanjun应助kiki采纳,获得10
6秒前
依力帕发布了新的文献求助10
8秒前
果小镁发布了新的文献求助10
8秒前
Miraitowa完成签到 ,获得积分10
9秒前
lxh完成签到,获得积分10
9秒前
11秒前
果小镁完成签到,获得积分10
14秒前
14秒前
suiyi发布了新的文献求助10
16秒前
寒食应助西海小甜豆采纳,获得30
17秒前
sqb发布了新的文献求助10
17秒前
20秒前
可爱的函函应助魔法世界采纳,获得10
21秒前
22秒前
23秒前
顾矜应助田野采纳,获得30
23秒前
小豆发布了新的文献求助10
24秒前
Aries完成签到 ,获得积分10
25秒前
27秒前
科目三应助Lawenced采纳,获得10
27秒前
28秒前
30秒前
搜集达人应助suiyi采纳,获得10
32秒前
wjwless发布了新的文献求助10
32秒前
FF发布了新的文献求助10
33秒前
痴情的绮菱完成签到,获得积分10
33秒前
wufabini发布了新的文献求助20
34秒前
明理念芹发布了新的文献求助10
35秒前
37秒前
cqnuly发布了新的文献求助30
37秒前
起点完成签到,获得积分10
37秒前
无聊的以南完成签到,获得积分20
37秒前
Hello应助科研通管家采纳,获得10
38秒前
丘比特应助科研通管家采纳,获得10
39秒前
Owen应助科研通管家采纳,获得10
39秒前
39秒前
研友_VZG7GZ应助科研通管家采纳,获得10
39秒前
Lucas应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268360
求助须知:如何正确求助?哪些是违规求助? 2907909
关于积分的说明 8343700
捐赠科研通 2578191
什么是DOI,文献DOI怎么找? 1401818
科研通“疑难数据库(出版商)”最低求助积分说明 655191
邀请新用户注册赠送积分活动 634322