Extrusion parameter control optimization for DIW 3D printing using image analysis techniques

挤压 切片 熔融沉积模型 3D打印 计算机科学 软件 水准点(测量) 机械工程 工程制图 材料科学 工程类 计算机图形学(图像) 复合材料 大地测量学 程序设计语言 地理
作者
Max J. Sevcik,Gabriel Bjerke,F. H. Wilson,Dylan J. Kline,R. Chavez Morales,H E Fletcher,Kaining Guan,Michael D. Grapes,Sridhar Seetharaman,Kyle T. Sullivan,Jonathan L. Belof,Veronica Eliasson
出处
期刊:Progress in additive manufacturing [Springer Nature]
卷期号:9 (2): 517-528 被引量:3
标识
DOI:10.1007/s40964-023-00470-3
摘要

Material extrusion is a well-recognized facet of additive manufacturing that involves the fabrication of parts through the deposition of structural material from an extrusion head from a bulk supply. In the subdivision of Direct Ink Writing (DIW) additive manufacturing, challenges arise when the structural material is flowable, synchronous extrusion control and tool movement becomes critical for achieving high-quality parts with low defect populations. DIW techniques are most used in laboratory settings using expensive custom instruments and may require specialized 3D slicing software. In this study, the fabrication of an inexpensive, consumer-friendly progressive cavity pump dispensing system is detailed, in which can create high-quality parts by executing G-code commands produced from a commercial slicing software. The precision and repeatability of the movement-synchronized material extrusion is demonstrated through a series of optimization schemes, entailing the alteration of various control parameters, which directly affect the extrusion properties demonstrated during a print. In situ diagnostics were implemented to evaluate the results of the established optimization experiment. Using a machine vision technique, images of the optimization prints are processed. Following this, a supervised machine learning model was trained to autonomously judge whether or not the extrusion parameters produced a passing or failing result. The machine learning scheme serves as a preliminary benchmark for future layer-by-layer evaluation of more complex DIW parts. The construction of the printer and development of in situ characterization capabilities demonstrates the ability for this printer to create high-fidelity DIW parts for a fraction of the price of other systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萌3690完成签到,获得积分10
1秒前
爆米花应助丹尼耳背采纳,获得20
1秒前
4秒前
打打应助小盘子采纳,获得10
5秒前
5秒前
小庄完成签到 ,获得积分10
6秒前
小蘑菇应助阿末采纳,获得10
6秒前
9秒前
9秒前
vspill发布了新的文献求助10
9秒前
11秒前
hzx发布了新的文献求助10
11秒前
yueqin发布了新的文献求助10
13秒前
酷炫的迎天完成签到,获得积分10
15秒前
Akim应助聪明牛排采纳,获得20
15秒前
理想三寻发布了新的文献求助30
15秒前
16秒前
大宝S欧D蜜完成签到,获得积分10
16秒前
ark861023发布了新的文献求助10
19秒前
咩咩羊发布了新的文献求助20
24秒前
zj完成签到,获得积分10
24秒前
30秒前
InfoNinja应助hzx采纳,获得30
31秒前
33秒前
半只兔子发布了新的文献求助10
34秒前
春天发布了新的文献求助10
36秒前
陨落星辰完成签到 ,获得积分10
38秒前
cnkly完成签到,获得积分10
40秒前
研友_8R7b2L完成签到,获得积分10
43秒前
43秒前
z_完成签到,获得积分10
43秒前
科研小白完成签到,获得积分10
44秒前
44秒前
46秒前
光芒万丈完成签到,获得积分20
46秒前
半只兔子完成签到,获得积分20
47秒前
mm完成签到,获得积分10
47秒前
47秒前
48秒前
Owen应助科研通管家采纳,获得30
48秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159874
求助须知:如何正确求助?哪些是违规求助? 2810842
关于积分的说明 7889629
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012