Discovery of N-Acyl Amino Acids and Novel Related N-, O-Acyl Lipids by Integrating Molecular Networking and an Extended In Silico Spectral Library

生物信息学 化学 衍生化 串联质谱法 计算生物学 组合化学 生物合成 质谱法 生物化学 色谱法 基因 生物
作者
Binghuan Yuan,X. Li,Shan Xu,Huan Sun,Cunsi Shen,Jianjian Ji,Lili Lin,Weichen Xu,Jinjun Shan,Wenjun Tong,Tong Xie
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (22): 8443-8451 被引量:2
标识
DOI:10.1021/acs.analchem.2c04822
摘要

Research on novel bioactive lipids has garnered increasing interest. Although lipids can be identified by searching mass spectral libraries, the discovery of novel lipids remains challenging as the query spectra of such lipids are not included in libraries. In this study, we propose a strategy to discover novel carboxylic acid-containing acyl lipids by integrating molecular networking with an extended in silico spectral library. Derivatization was performed to improve the response of this method. The tandem mass spectrometry spectra enriched by derivatization facilitated the formation of molecular networking and 244 nodes were annotated. We constructed consensus spectra for these annotations based on molecular networking and developed an extended in silico spectral library based on these consensus spectra. The spectral library included 6879 in silico molecules covering 12,179 spectra. Using this integration strategy, 653 acyl lipids were discovered. Among these, O-acyl lactic acids and N-lactoyl amino acid-conjugated lipids were annotated as novel acyl lipids. Compared with conventional methods, our proposed method allows for the discovery of novel acyl lipids, and extended in silico libraries significantly increase the size of the spectral library.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tt发布了新的文献求助10
1秒前
1秒前
Fine发布了新的文献求助10
1秒前
思源应助Sj泽采纳,获得10
2秒前
ZTT发布了新的文献求助10
2秒前
2秒前
lily发布了新的文献求助10
3秒前
4秒前
一一完成签到,获得积分10
5秒前
踏实的兔子完成签到 ,获得积分10
6秒前
xfq发布了新的文献求助10
6秒前
6秒前
xixi很困完成签到,获得积分10
6秒前
vine完成签到,获得积分10
6秒前
韩han发布了新的文献求助10
9秒前
9秒前
小五完成签到 ,获得积分10
9秒前
9秒前
10秒前
Flynn完成签到 ,获得积分10
11秒前
11秒前
天天快乐应助马皓采纳,获得10
12秒前
12秒前
wxl发布了新的文献求助10
12秒前
yelllllllllow发布了新的文献求助10
13秒前
13秒前
Zz发布了新的文献求助10
13秒前
14秒前
14秒前
啦啦啦啦呼完成签到,获得积分10
14秒前
科研通AI6应助三木采纳,获得10
14秒前
Ming Chen发布了新的文献求助10
15秒前
科研通AI6应助木子采纳,获得80
15秒前
科研通AI6应助ww采纳,获得10
16秒前
无花果应助风中尔蝶采纳,获得10
16秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
星辰大海应助Aurora.H采纳,获得30
17秒前
求助人员发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013