光催化
电子转移
化学
共价键
光化学
光诱导电子转移
调解人
有机化学
催化作用
医学
内科学
作者
Xia Li,Wei Wang,Fulin Zhang,Xianjun Lang
标识
DOI:10.1016/j.jcis.2023.06.027
摘要
Covalent organic frameworks (COFs) are promising visible light photocatalysts for aerobic oxidation reactions. However, COFs usually suffer from the assault of reactive oxygen species, leading to hindered electron transfer. This scenario could be addressed by integrating a mediator to promote photocatalysis. Starting with 4,4'-(benzo-2,1,3-thiadiazole-4,7-diyl)dianiline (BTD) and 2,4,6-triformylphloroglucinol (Tp), TpBTD-COF is developed as a photocatalyst for aerobic sulfoxidation. Adding an electron transfer mediator 2,2,6,6-tetramethylpiperidine-1‑oxyl (TEMPO), the conversions are radically accelerated, over 2.5 times of that without TEMPO. Moreover, the robustness of TpBTD-COF is preserved by TEMPO. Remarkably, TpBTD-COF could endure multiple cycles of sulfoxidation, even with higher conversions than the fresh one. TpBTD-COF photocatalysis with TEMPO implements diverse aerobic sulfoxidation by an electron transfer pathway. This work highlights that benzothiadiazole COFs are an avenue for tailor-made photocatalytic transformations.
科研通智能强力驱动
Strongly Powered by AbleSci AI