A novel Greenness and Water Content Composite Index (GWCCI) for soybean mapping from single remotely sensed multispectral images

多光谱图像 遥感 归一化差异植被指数 粮食安全 天蓬 种植 环境科学 含水量 比例(比率) 土地覆盖 农业 计算机科学 地理 地图学 土地利用 叶面积指数 农学 岩土工程 考古 工程类 生物 土木工程
作者
Hui Chen,Huapeng Li,Zhao Liu,Ce Zhang,Shuqing Zhang,Peter M. Atkinson
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:295: 113679-113679 被引量:32
标识
DOI:10.1016/j.rse.2023.113679
摘要

As a critical source of food and one of the most economically significant crops in the world, soybean plays an important role in achieving food security. Large area accurate mapping of soybean has long been a vital, but challenging issue in remote sensing, relying heavily on large-volume and representative training samples, whose collection is time-consuming and inefficient, especially for large areas (e.g., national scale). Thus, methods are needed that can map soybean automatically and accurately from single-date remotely sensed imagery. In this research, a novel Greenness and Water Content Composite Index (GWCCI) was proposed to map soybean from just a single Sentinel-2 multispectral image in an end-to-end manner without employing training samples. By capitalizing on the product of the NDVI (related to greenness) and the short-wave infrared (SWIR) band (related to canopy water content), the GWCCI provides the required information with which to discriminate between soybean and other land cover types. The effectiveness of the proposed GWCCI was investigated in seven typical soybean planting regions within four major soybean-producing countries across the world (i.e., China, the United States, Brazil and Argentina), with diverse climates, cropping systems and agricultural landscapes. In the experiments, an optimal threshold of 0.17 was estimated and adopted by the GWCCI in the first study site (S1) in 2021, and then generalised to the other study sites over multiple years for soybean mapping. The GWCCI method achieved a consistently higher accuracy in 2021 compared to two conventional comparative classifiers (support vector machine (SVM) and random forest (RF)), with an average overall accuracy (OA) of 88.30% and a Kappa coefficient (k) of 0.77; significantly greater than those of RF (OA: 80.92%, k: 0.62) and SVM (OA: 80.29%, k: 0.60). Furthermore, the OA of the extended years was highly consistent with that of 2021 for study sites S2 to S7, demonstrating the great generalisation capability and robustness of the proposed approach over multiple years. The proposed GWCCI method is straightforward, reliable and robust, and represents an important step forward for mapping soybean, one of the most significant crops grown globally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张哈哈发布了新的文献求助10
1秒前
1秒前
毛豆爱睡觉完成签到,获得积分20
2秒前
3秒前
4秒前
4秒前
皮皮虾小段完成签到,获得积分10
6秒前
上官若男应助冷傲凝琴采纳,获得10
6秒前
昔年完成签到 ,获得积分0
6秒前
7秒前
l六分之一完成签到,获得积分10
8秒前
ew发布了新的文献求助30
9秒前
10秒前
12秒前
12秒前
bofu完成签到,获得积分10
12秒前
城市没有日出完成签到,获得积分10
13秒前
13秒前
在水一方应助Litoivda采纳,获得20
13秒前
无忧无虑发布了新的文献求助10
15秒前
飘逸楷瑞发布了新的文献求助20
16秒前
16秒前
beyondjun发布了新的文献求助10
17秒前
18秒前
冰霜雨露完成签到 ,获得积分10
19秒前
19秒前
20秒前
22秒前
Zxy完成签到 ,获得积分10
24秒前
Orange应助与落采纳,获得10
24秒前
脑洞疼应助Quentin9998采纳,获得10
25秒前
25秒前
26秒前
ew完成签到,获得积分10
26秒前
冷傲凝琴发布了新的文献求助10
27秒前
激昂的青完成签到,获得积分10
27秒前
wang关注了科研通微信公众号
27秒前
27秒前
Zxy关注了科研通微信公众号
28秒前
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962328
求助须知:如何正确求助?哪些是违规求助? 3508472
关于积分的说明 11141017
捐赠科研通 3241123
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872827
科研通“疑难数据库(出版商)”最低求助积分说明 803382