A novel Greenness and Water Content Composite Index (GWCCI) for soybean mapping from single remotely sensed multispectral images

多光谱图像 遥感 归一化差异植被指数 粮食安全 天蓬 种植 环境科学 含水量 比例(比率) 土地覆盖 农业 计算机科学 地理 地图学 土地利用 叶面积指数 农学 岩土工程 考古 工程类 生物 土木工程
作者
Hui Chen,Huapeng Li,Zhao Liu,Ce Zhang,Shuqing Zhang,Peter M. Atkinson
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:295: 113679-113679 被引量:32
标识
DOI:10.1016/j.rse.2023.113679
摘要

As a critical source of food and one of the most economically significant crops in the world, soybean plays an important role in achieving food security. Large area accurate mapping of soybean has long been a vital, but challenging issue in remote sensing, relying heavily on large-volume and representative training samples, whose collection is time-consuming and inefficient, especially for large areas (e.g., national scale). Thus, methods are needed that can map soybean automatically and accurately from single-date remotely sensed imagery. In this research, a novel Greenness and Water Content Composite Index (GWCCI) was proposed to map soybean from just a single Sentinel-2 multispectral image in an end-to-end manner without employing training samples. By capitalizing on the product of the NDVI (related to greenness) and the short-wave infrared (SWIR) band (related to canopy water content), the GWCCI provides the required information with which to discriminate between soybean and other land cover types. The effectiveness of the proposed GWCCI was investigated in seven typical soybean planting regions within four major soybean-producing countries across the world (i.e., China, the United States, Brazil and Argentina), with diverse climates, cropping systems and agricultural landscapes. In the experiments, an optimal threshold of 0.17 was estimated and adopted by the GWCCI in the first study site (S1) in 2021, and then generalised to the other study sites over multiple years for soybean mapping. The GWCCI method achieved a consistently higher accuracy in 2021 compared to two conventional comparative classifiers (support vector machine (SVM) and random forest (RF)), with an average overall accuracy (OA) of 88.30% and a Kappa coefficient (k) of 0.77; significantly greater than those of RF (OA: 80.92%, k: 0.62) and SVM (OA: 80.29%, k: 0.60). Furthermore, the OA of the extended years was highly consistent with that of 2021 for study sites S2 to S7, demonstrating the great generalisation capability and robustness of the proposed approach over multiple years. The proposed GWCCI method is straightforward, reliable and robust, and represents an important step forward for mapping soybean, one of the most significant crops grown globally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助俏皮的安萱采纳,获得10
1秒前
nino应助柠檬采纳,获得10
1秒前
junjun发布了新的文献求助40
1秒前
msy发布了新的文献求助80
1秒前
zzznznnn发布了新的文献求助10
2秒前
3秒前
Qz发布了新的文献求助10
3秒前
3秒前
顾矜应助夏天采纳,获得10
4秒前
4秒前
5秒前
和谐沛芹完成签到,获得积分20
5秒前
6秒前
聪明盈发布了新的文献求助10
7秒前
wanci应助Lzz采纳,获得10
8秒前
嘟嘟发布了新的文献求助20
8秒前
9秒前
共享精神应助tzjz_zrz采纳,获得10
9秒前
9秒前
情怀应助LQ采纳,获得10
10秒前
11秒前
11秒前
12秒前
科研菜鸟完成签到,获得积分10
12秒前
小皮发布了新的文献求助10
12秒前
哇塞发布了新的文献求助10
13秒前
14秒前
Bingbingbing完成签到,获得积分10
14秒前
15秒前
peaceone发布了新的文献求助10
15秒前
锦鲤禾完成签到,获得积分20
16秒前
zhang发布了新的文献求助10
16秒前
夏天发布了新的文献求助10
17秒前
锋回露转123完成签到,获得积分10
17秒前
18秒前
Hashirma完成签到,获得积分10
18秒前
嘟嘟完成签到,获得积分20
19秒前
无心的璎发布了新的文献求助10
19秒前
20秒前
高分求助中
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Avialinguistics:The Study of Language for Aviation Purposes 270
Andrew Duncan Senior: Physician of the Enlightenment 240
University-Industry Collaboration and the Success Mechanism of Collaboration 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3681225
求助须知:如何正确求助?哪些是违规求助? 3233274
关于积分的说明 9807240
捐赠科研通 2944592
什么是DOI,文献DOI怎么找? 1614863
邀请新用户注册赠送积分活动 762388
科研通“疑难数据库(出版商)”最低求助积分说明 737381