A novel Greenness and Water Content Composite Index (GWCCI) for soybean mapping from single remotely sensed multispectral images

多光谱图像 遥感 归一化差异植被指数 粮食安全 天蓬 种植 环境科学 含水量 比例(比率) 土地覆盖 农业 计算机科学 地理 地图学 土地利用 叶面积指数 农学 岩土工程 考古 工程类 生物 土木工程
作者
Hui Chen,Huapeng Li,Zhao Liu,Ce Zhang,Shuqing Zhang,Peter M. Atkinson
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:295: 113679-113679 被引量:32
标识
DOI:10.1016/j.rse.2023.113679
摘要

As a critical source of food and one of the most economically significant crops in the world, soybean plays an important role in achieving food security. Large area accurate mapping of soybean has long been a vital, but challenging issue in remote sensing, relying heavily on large-volume and representative training samples, whose collection is time-consuming and inefficient, especially for large areas (e.g., national scale). Thus, methods are needed that can map soybean automatically and accurately from single-date remotely sensed imagery. In this research, a novel Greenness and Water Content Composite Index (GWCCI) was proposed to map soybean from just a single Sentinel-2 multispectral image in an end-to-end manner without employing training samples. By capitalizing on the product of the NDVI (related to greenness) and the short-wave infrared (SWIR) band (related to canopy water content), the GWCCI provides the required information with which to discriminate between soybean and other land cover types. The effectiveness of the proposed GWCCI was investigated in seven typical soybean planting regions within four major soybean-producing countries across the world (i.e., China, the United States, Brazil and Argentina), with diverse climates, cropping systems and agricultural landscapes. In the experiments, an optimal threshold of 0.17 was estimated and adopted by the GWCCI in the first study site (S1) in 2021, and then generalised to the other study sites over multiple years for soybean mapping. The GWCCI method achieved a consistently higher accuracy in 2021 compared to two conventional comparative classifiers (support vector machine (SVM) and random forest (RF)), with an average overall accuracy (OA) of 88.30% and a Kappa coefficient (k) of 0.77; significantly greater than those of RF (OA: 80.92%, k: 0.62) and SVM (OA: 80.29%, k: 0.60). Furthermore, the OA of the extended years was highly consistent with that of 2021 for study sites S2 to S7, demonstrating the great generalisation capability and robustness of the proposed approach over multiple years. The proposed GWCCI method is straightforward, reliable and robust, and represents an important step forward for mapping soybean, one of the most significant crops grown globally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗QQ完成签到 ,获得积分10
刚刚
刚刚
刚刚
斯文败类应助儒雅寒天采纳,获得10
刚刚
孙文昭发布了新的文献求助10
刚刚
一幕清寒完成签到,获得积分20
1秒前
1秒前
3秒前
侯长秀完成签到 ,获得积分10
4秒前
大糖糕僧发布了新的文献求助10
4秒前
研友_VZG7GZ应助暴躁的振家采纳,获得10
4秒前
t1234567发布了新的文献求助10
5秒前
浮游应助依风采纳,获得10
5秒前
yue发布了新的文献求助10
5秒前
孙文昭完成签到,获得积分10
6秒前
木子李发布了新的文献求助10
6秒前
Akim应助kids采纳,获得10
6秒前
浮游应助semigreen采纳,获得10
6秒前
李健应助snow采纳,获得10
7秒前
阙女士发布了新的文献求助10
8秒前
桐桐应助zhengzh采纳,获得10
8秒前
10秒前
John完成签到,获得积分10
10秒前
科目三应助qianqina采纳,获得10
10秒前
科研菜菜鸡完成签到,获得积分10
10秒前
古月完成签到,获得积分10
11秒前
12秒前
13秒前
404发布了新的文献求助10
14秒前
John发布了新的文献求助10
15秒前
脑洞疼应助t1234567采纳,获得10
15秒前
妙旋克里斯完成签到,获得积分10
16秒前
雾岛看海完成签到,获得积分10
16秒前
17秒前
刻苦的媚颜完成签到 ,获得积分10
18秒前
Lec16发布了新的文献求助10
19秒前
20秒前
blue完成签到,获得积分10
21秒前
21秒前
科目三应助阙女士采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908239
求助须知:如何正确求助?哪些是违规求助? 4184921
关于积分的说明 12996146
捐赠科研通 3951616
什么是DOI,文献DOI怎么找? 2167074
邀请新用户注册赠送积分活动 1185545
关于科研通互助平台的介绍 1092127