亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AoI-Guaranteed Incentive Mechanism for Mobile Crowdsensing With Freshness Concerns

斯塔克伯格竞赛 计算机科学 激励 完整信息 机构设计 马尔可夫决策过程 移动设备 运筹学 马尔可夫过程 微观经济学 操作系统 工程类 统计 数学 经济
作者
Yin Xu,Mingjun Xiao,Yu Zhu,Jie Wu,Sheng Zhang,Jing Zhou
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (5): 4107-4125 被引量:4
标识
DOI:10.1109/tmc.2023.3285779
摘要

With the explosive spread of smart mobile devices, Mobile CrowdSensing (MCS) has been becoming a promising paradigm, by which a platform can coordinate a group of workers to complete large-scale data collection tasks using their mobile devices. In this paper, we investigate the incentive mechanism design in MCS systems, taking the freshness of collected data and social benefits into consideration. First, the Age of Information (AoI) metric is introduced to measure the freshness of data. Then, we model the incentive mechanism design with AoI guarantees as an incomplete information two-stage Stackelberg game with multiple constraints. Next, we consider the scenario that all participants share the public utility function parameters of the Stackelberg game. By deriving the optimal remuneration paid by the platform and the optimal data update frequency for each worker, and proving the existence of a unique Stackelberg equilibrium, we propose an AoI-guaranteed Incentive Mechanism (AIM) that enables the platform and all workers to maximize their utilities simultaneously. Furthermore, we extend AIM to a general scenario where each participant has no prior knowledge of the utility function parameters of the game. By resorting to the Deep Reinforcement Learning (DRL) technique and modeling the two-stage Stackelberg game as a Markov decision process, we propose a DRL-based Incentive Mechanism (DIM) with AoI guarantees, which makes each participant effectively seek its optimal strategy through trial and error. Meanwhile, the system can guarantee that the AoI values of all data uploaded to the platform are not larger than a given threshold. Finally, numerical experiments on real-world traces are conducted to validate the efficacy and efficiency of AIM and DIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李志全完成签到 ,获得积分10
1秒前
天空之城完成签到,获得积分10
4秒前
13秒前
自觉语琴完成签到 ,获得积分10
22秒前
26秒前
ssskong发布了新的文献求助10
29秒前
赵焱峥完成签到,获得积分10
32秒前
ssskong完成签到,获得积分20
35秒前
47秒前
美罗培南完成签到,获得积分10
50秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
归尘应助科研通管家采纳,获得30
53秒前
研友_VZG7GZ应助科研通管家采纳,获得10
54秒前
55秒前
55秒前
56秒前
Lucas应助jinl9587采纳,获得10
57秒前
JKWu完成签到,获得积分10
59秒前
隐形曼青应助可耐的尔白采纳,获得10
1分钟前
1分钟前
1分钟前
juzg发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
zhongbo发布了新的文献求助10
1分钟前
柠檬完成签到,获得积分10
1分钟前
alex发布了新的文献求助10
1分钟前
KDS发布了新的文献求助10
1分钟前
1分钟前
justsoso完成签到 ,获得积分10
1分钟前
1分钟前
朴素的山蝶完成签到 ,获得积分10
1分钟前
878787发布了新的文献求助20
1分钟前
完美世界应助巴拉芭芭拉采纳,获得10
1分钟前
小哈完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
juzg完成签到,获得积分10
1分钟前
jinl9587发布了新的文献求助10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555693
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390757
捐赠科研通 2831039
什么是DOI,文献DOI怎么找? 1556299
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803