Direct evidences for bis(fluorosulfonyl)imide anion hydrolysis in industrial production: Pathways based on thermodynamics analysis and theoretical simulation

水解 化学 电泳剂 亲核细胞 无机化学 锂(药物) 电解质 酰亚胺 溶剂 有机化学 物理化学 催化作用 电极 医学 内分泌学
作者
Shouquan Zhou,Siyu Zhang,Shang Wang,Weiling Zhang,Yan Liu,Hui Lin,Jingjing Chen,Longfei Yan,Fuweng Zhang,Hao‐Hong Li,Huidong Zheng
出处
期刊:Journal of Power Sources [Elsevier BV]
卷期号:577: 233249-233249 被引量:13
标识
DOI:10.1016/j.jpowsour.2023.233249
摘要

LiFSI (lithium bis(fluorosulfonyl)imide) is a promising lithium salt for electrolytes in Li-ion batteries. However, the accumulation of harmful gases and heat during LiFSI hydrolysis could lead to serious safety accidents. Here we systematically investigate LiFSI hydrolysis processes under comprehensive conditions: higher temperature/acidity/basicity and lower water content can accelerate the hydrolysis, whereas the presence of DEC (diethyl carbonate) solvent, and other alkali metals (Na+, K+) can stabilize FSI−. Unexpectedly, under alkaline conditions, temperature/water content could not affect the hydrolysis greatly. By monitoring the hydrolysis intermediates and products using time-dependent ion chromatography, infrared spectra, and nuclear magnetic resonance, the hydrolysis routes are proposed and validated by accelerating rate calorimetry, differential scanning calorimetry measurements, and theoretical calculations. Under neutral/acidic conditions, electrophilic attack on the S–N bond generates FSO2NH2 and FSO3−, while nucleophilic attack on the S–F bond produces FSO2NSO32− and SO3NHSO32− under alkaline conditions. As indicated by DFT calculation, the weaker S–N bond and larger S–N–S angle facilitate the electrophilic attack under acid conditions. Furthermore, very unstable intermediates (FSO2NH2 and CH3CH2OSO3H) are determined for the first time. Based on these hydrolysis mechanisms, strategies for inhibiting LiFSI hydrolysis are provided, which is significant for the high-efficiency production and safe storage/transportation of LiFSI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
jing发布了新的文献求助10
2秒前
3秒前
科研通AI5应助momo采纳,获得10
3秒前
3秒前
CL发布了新的文献求助10
3秒前
lingkai发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
changping应助科研通管家采纳,获得150
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
SciGPT应助小木采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
changping应助科研通管家采纳,获得150
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
mengjiali应助科研通管家采纳,获得10
6秒前
eric888应助科研通管家采纳,获得150
6秒前
6秒前
changping应助科研通管家采纳,获得150
6秒前
打打应助科研通管家采纳,获得10
6秒前
eric888应助科研通管家采纳,获得150
6秒前
wxyshare应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
不语完成签到,获得积分10
7秒前
腾飞关注了科研通微信公众号
8秒前
SCI发布了新的文献求助10
8秒前
大力蚂蚁发布了新的文献求助10
9秒前
甜菜完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5158188
求助须知:如何正确求助?哪些是违规求助? 4353142
关于积分的说明 13553986
捐赠科研通 4196565
什么是DOI,文献DOI怎么找? 2301684
邀请新用户注册赠送积分活动 1301442
关于科研通互助平台的介绍 1246649