Lung nodule classification model based on dual-path network

假阳性悖论 计算机科学 模式识别(心理学) 残余物 人工智能 特征(语言学) 路径(计算) 对偶(语法数字) 结核(地质) 集合(抽象数据类型) 数据集 算法 数据挖掘 艺术 古生物学 文学类 生物 哲学 语言学 程序设计语言
作者
Xiaojing Li,wenxin li
标识
DOI:10.1117/12.2675164
摘要

In CT images, the shape and size of lung nodules are often used to diagnose lung cancer. However, the distinction between benign and malignant nodules is of great significance for the treatment of diseases. In order to solve the problems of low classification accuracy and high false positives in traditional lung nodule diagnosis methods, this paper innovatively designs a dual-path lung nodule classification network model (DPN-AT) that introduces an attention mechanism. The model combines the advantages of residual networks and densely connected networks, which can extract low-level information from high-latitude features, improve the fitting ability of the model, reduce the number of model parameters, and shorten the training time of the model. By introducing an attention mechanism to characterize the dependency between feature channels and adaptively adjust the importance of features. Using the algorithm in this paper to experiment on the LIDC-IDRI data set, the experimental analysis results show that the average accuracy of the DPN-AT algorithm reaches 94.53%, which is better than the average accuracy based on the DPN classification algorithm. In addition, it also has obvious advantages in terms of the time consumption of the classification algorithm. The improved DPN-AT can converge faster and obtain stable results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Grayball应助包容的剑采纳,获得10
刚刚
深情安青应助寒冷书竹采纳,获得10
1秒前
wbj0722完成签到,获得积分10
1秒前
JIAO完成签到,获得积分10
1秒前
1秒前
2秒前
852应助HopeStar采纳,获得10
2秒前
圆圆发布了新的文献求助30
3秒前
Orange应助Promise采纳,获得10
3秒前
一直发布了新的文献求助20
3秒前
3秒前
4秒前
乐乐应助JonyiCheng采纳,获得10
4秒前
无聊先知发布了新的文献求助10
4秒前
医路有你发布了新的文献求助10
5秒前
5秒前
5秒前
drizzling发布了新的文献求助10
6秒前
平淡南松完成签到,获得积分10
7秒前
研友_ED5GK完成签到,获得积分0
7秒前
舒适豌豆发布了新的文献求助10
7秒前
8秒前
生动的雨竹完成签到,获得积分10
8秒前
8秒前
啦啦啦完成签到,获得积分20
9秒前
silentJeremy完成签到,获得积分10
9秒前
9秒前
WNL发布了新的文献求助10
9秒前
10秒前
10秒前
玉yu完成签到 ,获得积分10
10秒前
嗯呢完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
12秒前
跳跃难胜发布了新的文献求助10
12秒前
大脸妹完成签到,获得积分10
12秒前
愤怒的源智完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678