Multi-sensor signals multi-scale fusion method for fault detection of high-speed and high-power diesel engine under variable operating conditions

计算机科学 柴油机 断层(地质) 故障检测与隔离 稳健性(进化) 操作点 汽车工程 电子工程 人工智能 工程类 生物化学 基因 地质学 地震学 执行机构 化学
作者
Jiaqi Liang,Zhiwei Mao,Fengchun Liu,Xiangxin Kong,Jinjie Zhang,Zhinong Jiang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 106912-106912 被引量:1
标识
DOI:10.1016/j.engappai.2023.106912
摘要

Detecting faults in high-speed and high-power diesel engines under complex variable operating conditions is highly challenging. Online vibration monitoring systems have been used in such diesel engines in key fields, in which vibration sensors are installed on each cylinder to enable comprehensive monitoring. In this paper, a fault detection method for diesel engines under variable operating conditions is proposed based on multi-sensor signal multi-scale fusion. Firstly, a preprocessing framework is established for the raw vibration signals collected from each cylinder to eliminate random interference and system noise. Then, the resulting signals are phase-aligned based on the engine firing sequence and analyzed using a signal correlation algorithm to produce a multi-sensor multi-scale similarity matrix (MSMSSM). Finally, a multi-branch residual convolutional neural network (MBRCNN) model is constructed with the MSMSSM as the input to detect abnormal health states of the diesel engine. Fault simulation experiments are conducted on a 12-cylinder V-type high-speed and high-power diesel engine test rig. The comparative test results indicate that the proposed MSMSSM-MBRCNN method shows both the highest accuracy of 95.28% and the lowest standard deviation of 3.57% compared to other typical methods. The multi-sensor signals multi-scale fusion method proposed in this paper fully utilizes the key information that remains basically consistent in the synchronous acquisition signals of multiple sensors under different operating conditions. This can effectively reduce the interference of operating condition changes and improve the accuracy and robustness of fault detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
33发布了新的文献求助10
4秒前
光之霓裳完成签到 ,获得积分10
4秒前
WELXCNK完成签到 ,获得积分10
5秒前
小柯基学从零学起完成签到 ,获得积分10
5秒前
852关闭了852文献求助
11秒前
蓝胖胖蓝完成签到,获得积分10
11秒前
13秒前
南宫书瑶完成签到,获得积分10
13秒前
15秒前
赵田完成签到 ,获得积分10
16秒前
憨憨医生发布了新的文献求助10
19秒前
23秒前
23秒前
yiyi1s完成签到 ,获得积分10
24秒前
25秒前
薛华倩发布了新的文献求助10
28秒前
吃醋的喵酱完成签到 ,获得积分10
31秒前
慕子完成签到 ,获得积分10
33秒前
mengli完成签到 ,获得积分10
39秒前
40秒前
跨材料完成签到,获得积分10
41秒前
天天完成签到 ,获得积分10
44秒前
天天快乐应助欢喜怀绿采纳,获得10
48秒前
时尚的开山应助8023采纳,获得10
50秒前
今后应助程风破浪采纳,获得10
54秒前
54秒前
阿鹿462完成签到 ,获得积分10
55秒前
司藤完成签到 ,获得积分10
58秒前
58秒前
58秒前
1分钟前
7anWing完成签到 ,获得积分10
1分钟前
1分钟前
皮皮完成签到 ,获得积分10
1分钟前
欢喜怀绿发布了新的文献求助10
1分钟前
wqy完成签到 ,获得积分10
1分钟前
乐观寻绿完成签到 ,获得积分10
1分钟前
lingo完成签到 ,获得积分10
1分钟前
有风的地方完成签到 ,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371704
求助须知:如何正确求助?哪些是违规求助? 2989769
关于积分的说明 8737179
捐赠科研通 2673092
什么是DOI,文献DOI怎么找? 1464361
科研通“疑难数据库(出版商)”最低求助积分说明 677506
邀请新用户注册赠送积分活动 668824