YOLO-FA: Type-1 fuzzy attention based YOLO detector for vehicle detection

计算机科学 人工智能 模糊逻辑 探测器 光学(聚焦) 卷积神经网络 模式识别(心理学) 计算机视觉 电信 光学 物理
作者
Kang Li,Zhiwei Lü,Lingyu Meng,Zhijian Gao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121209-121209 被引量:55
标识
DOI:10.1016/j.eswa.2023.121209
摘要

Vehicle detection is an important component of intelligent transportation systems and autonomous driving. However, in real-world vehicle detection scenarios, the presence of many complex and high uncertainty factors, such as illumination differences, motion blur, occlusion, weather, etc., makes accurate and real-time vehicle detection still challenging. In order to reduce the influence of these uncertainties in real scenarios and improve the accuracy and real-time performance of vehicle detection, this paper proposes a type-1 fuzzy attention (T1FA), in which fuzzy entropy is introduced to re-weight the feature map in order to reduce the uncertainty of the feature map and facilitates the detector's focus on the target center as a way to effectively improve the accuracy of vehicle detection. Furthermore, to detect vehicles with different sizes more effectively, mixed depth convolution in MetaFormer (MDFormer) is employed as a token mixer to capture multi-scale perceptual fields. And a novel YOLO detector based on fuzzy attention (YOLO-FA) is proposed. Experimental results show that T1FA can boost 3.2% AP50 on challenging vehicle detection dataset UA-DETRAC, which is better than other commonly used attention mechanisms, especially in scenarios of rain and nighttime with higher uncertainty by 4.2% and 8.1% AP50, respectively. Finally, without pretraining on extra data, YOLO-FA achieves 70.0% AP50 and 50.3% AP on UA-DETRAC, which achieves better balance between accuracy and speed compared with state-of-the-art detectors. The remarkable improvement of T1FA in different detectors and datasets also shows the considerable generalization of T1FA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨熊发布了新的文献求助10
1秒前
shanbaibai发布了新的文献求助10
1秒前
1秒前
orixero应助乐观依云采纳,获得10
1秒前
研友_VZG7GZ应助dzll采纳,获得10
2秒前
2秒前
veblem发布了新的文献求助10
2秒前
lanren666完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
23完成签到,获得积分10
5秒前
178181发布了新的文献求助10
5秒前
5秒前
123发布了新的文献求助30
6秒前
科研dog发布了新的文献求助10
6秒前
言甚发布了新的文献求助10
6秒前
董董发布了新的文献求助10
7秒前
阿司匹林发布了新的文献求助10
7秒前
8秒前
赘婿应助麻果采纳,获得10
8秒前
Orange应助fishfun采纳,获得10
8秒前
9秒前
胡楠发布了新的文献求助10
9秒前
CodeCraft应助shanmao采纳,获得10
9秒前
23发布了新的文献求助10
9秒前
dongjy应助整齐的小鸽子采纳,获得150
10秒前
yy76完成签到,获得积分10
10秒前
半江完成签到,获得积分10
11秒前
研究生完成签到,获得积分10
11秒前
jinhuanghuiyu发布了新的文献求助10
12秒前
chen发布了新的文献求助10
12秒前
13秒前
dzll发布了新的文献求助10
13秒前
机智的万宝路完成签到,获得积分10
13秒前
英俊的铭应助铁柱采纳,获得10
13秒前
研究生发布了新的文献求助20
14秒前
15秒前
归尘发布了新的文献求助10
15秒前
123完成签到,获得积分20
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979289
求助须知:如何正确求助?哪些是违规求助? 3523220
关于积分的说明 11216715
捐赠科研通 3260668
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807111