YOLO-FA: Type-1 fuzzy attention based YOLO detector for vehicle detection

计算机科学 人工智能 模糊逻辑 探测器 光学(聚焦) 卷积神经网络 模式识别(心理学) 计算机视觉 电信 物理 光学
作者
Kang Li,Zhiwei Lü,Lingyu Meng,Zhijian Gao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121209-121209 被引量:88
标识
DOI:10.1016/j.eswa.2023.121209
摘要

Vehicle detection is an important component of intelligent transportation systems and autonomous driving. However, in real-world vehicle detection scenarios, the presence of many complex and high uncertainty factors, such as illumination differences, motion blur, occlusion, weather, etc., makes accurate and real-time vehicle detection still challenging. In order to reduce the influence of these uncertainties in real scenarios and improve the accuracy and real-time performance of vehicle detection, this paper proposes a type-1 fuzzy attention (T1FA), in which fuzzy entropy is introduced to re-weight the feature map in order to reduce the uncertainty of the feature map and facilitates the detector's focus on the target center as a way to effectively improve the accuracy of vehicle detection. Furthermore, to detect vehicles with different sizes more effectively, mixed depth convolution in MetaFormer (MDFormer) is employed as a token mixer to capture multi-scale perceptual fields. And a novel YOLO detector based on fuzzy attention (YOLO-FA) is proposed. Experimental results show that T1FA can boost 3.2% AP50 on challenging vehicle detection dataset UA-DETRAC, which is better than other commonly used attention mechanisms, especially in scenarios of rain and nighttime with higher uncertainty by 4.2% and 8.1% AP50, respectively. Finally, without pretraining on extra data, YOLO-FA achieves 70.0% AP50 and 50.3% AP on UA-DETRAC, which achieves better balance between accuracy and speed compared with state-of-the-art detectors. The remarkable improvement of T1FA in different detectors and datasets also shows the considerable generalization of T1FA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
李庭福发布了新的文献求助10
刚刚
ZX801发布了新的文献求助10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
帅气的绿凝完成签到,获得积分10
刚刚
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
ouyang发布了新的文献求助10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
able应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
思源应助科研通管家采纳,获得30
1秒前
852应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得30
2秒前
Kevin完成签到,获得积分10
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
wanci应助小城故事和冰雨采纳,获得10
2秒前
2秒前
Angel完成签到,获得积分10
2秒前
小青椒应助科研通管家采纳,获得30
2秒前
CodeCraft应助科研通管家采纳,获得50
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
是莉莉娅完成签到,获得积分10
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
田様应助卫绯采纳,获得10
3秒前
3秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313