YOLO-FA: Type-1 fuzzy attention based YOLO detector for vehicle detection

计算机科学 人工智能 模糊逻辑 探测器 光学(聚焦) 卷积神经网络 模式识别(心理学) 计算机视觉 电信 物理 光学
作者
Kang Li,Zhiwei Lü,Lingyu Meng,Zhijian Gao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121209-121209 被引量:71
标识
DOI:10.1016/j.eswa.2023.121209
摘要

Vehicle detection is an important component of intelligent transportation systems and autonomous driving. However, in real-world vehicle detection scenarios, the presence of many complex and high uncertainty factors, such as illumination differences, motion blur, occlusion, weather, etc., makes accurate and real-time vehicle detection still challenging. In order to reduce the influence of these uncertainties in real scenarios and improve the accuracy and real-time performance of vehicle detection, this paper proposes a type-1 fuzzy attention (T1FA), in which fuzzy entropy is introduced to re-weight the feature map in order to reduce the uncertainty of the feature map and facilitates the detector's focus on the target center as a way to effectively improve the accuracy of vehicle detection. Furthermore, to detect vehicles with different sizes more effectively, mixed depth convolution in MetaFormer (MDFormer) is employed as a token mixer to capture multi-scale perceptual fields. And a novel YOLO detector based on fuzzy attention (YOLO-FA) is proposed. Experimental results show that T1FA can boost 3.2% AP50 on challenging vehicle detection dataset UA-DETRAC, which is better than other commonly used attention mechanisms, especially in scenarios of rain and nighttime with higher uncertainty by 4.2% and 8.1% AP50, respectively. Finally, without pretraining on extra data, YOLO-FA achieves 70.0% AP50 and 50.3% AP on UA-DETRAC, which achieves better balance between accuracy and speed compared with state-of-the-art detectors. The remarkable improvement of T1FA in different detectors and datasets also shows the considerable generalization of T1FA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助hui采纳,获得10
1秒前
qq发布了新的文献求助10
1秒前
可爱的函函应助lh采纳,获得10
2秒前
大方的羊青完成签到,获得积分10
2秒前
renhuizhi发布了新的文献求助30
2秒前
丁浩添完成签到,获得积分20
2秒前
顾矜应助julygiao采纳,获得20
3秒前
八月完成签到,获得积分10
4秒前
Yugugu应助lin采纳,获得10
4秒前
还单身的香菇完成签到,获得积分10
4秒前
苗条桐发布了新的文献求助10
4秒前
8秒前
CHANG完成签到 ,获得积分10
8秒前
科研通AI5应助cqmuluo采纳,获得10
9秒前
10秒前
小马甲应助郭志倩采纳,获得10
10秒前
11秒前
小呆呆完成签到,获得积分10
11秒前
肚子饿了发布了新的文献求助10
12秒前
ycxlb完成签到,获得积分10
13秒前
13秒前
13秒前
发疯研究生完成签到,获得积分10
13秒前
saywhy完成签到 ,获得积分10
13秒前
欣慰巨人完成签到,获得积分10
14秒前
una完成签到 ,获得积分10
14秒前
微笑的井完成签到 ,获得积分10
14秒前
plusweng完成签到 ,获得积分10
15秒前
CipherSage应助FK7采纳,获得10
16秒前
深情安青应助FK7采纳,获得10
16秒前
上官若男应助QSZ采纳,获得10
17秒前
栗子完成签到,获得积分10
17秒前
17秒前
明明完成签到,获得积分10
18秒前
lh发布了新的文献求助10
18秒前
搜集达人应助王智勇采纳,获得10
19秒前
Nakjeong完成签到 ,获得积分10
19秒前
cambridge完成签到,获得积分10
19秒前
Galri完成签到 ,获得积分10
21秒前
cjcslhp2468发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911582
求助须知:如何正确求助?哪些是违规求助? 4187043
关于积分的说明 13002331
捐赠科研通 3954873
什么是DOI,文献DOI怎么找? 2168482
邀请新用户注册赠送积分活动 1186950
关于科研通互助平台的介绍 1094256