YOLO-FA: Type-1 fuzzy attention based YOLO detector for vehicle detection

计算机科学 人工智能 模糊逻辑 探测器 光学(聚焦) 卷积神经网络 计算机视觉 电信 物理 光学
作者
Kang Li,Zhiwei Lü,Lingyu Meng,Zhijian Gao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121209-121209 被引量:26
标识
DOI:10.1016/j.eswa.2023.121209
摘要

Vehicle detection is an important component of intelligent transportation systems and autonomous driving. However, in real-world vehicle detection scenarios, the presence of many complex and high uncertainty factors, such as illumination differences, motion blur, occlusion, weather, etc., makes accurate and real-time vehicle detection still challenging. In order to reduce the influence of these uncertainties in real scenarios and improve the accuracy and real-time performance of vehicle detection, this paper proposes a type-1 fuzzy attention (T1FA), in which fuzzy entropy is introduced to re-weight the feature map in order to reduce the uncertainty of the feature map and facilitates the detector's focus on the target center as a way to effectively improve the accuracy of vehicle detection. Furthermore, to detect vehicles with different sizes more effectively, mixed depth convolution in MetaFormer (MDFormer) is employed as a token mixer to capture multi-scale perceptual fields. And a novel YOLO detector based on fuzzy attention (YOLO-FA) is proposed. Experimental results show that T1FA can boost 3.2% AP50 on challenging vehicle detection dataset UA-DETRAC, which is better than other commonly used attention mechanisms, especially in scenarios of rain and nighttime with higher uncertainty by 4.2% and 8.1% AP50, respectively. Finally, without pretraining on extra data, YOLO-FA achieves 70.0% AP50 and 50.3% AP on UA-DETRAC, which achieves better balance between accuracy and speed compared with state-of-the-art detectors. The remarkable improvement of T1FA in different detectors and datasets also shows the considerable generalization of T1FA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助两条大肥鱼采纳,获得10
1秒前
CRY完成签到,获得积分20
1秒前
cherrychou发布了新的文献求助10
1秒前
2秒前
4秒前
4秒前
LY发布了新的文献求助10
5秒前
dabaan完成签到,获得积分10
6秒前
田様应助zhouchen采纳,获得10
7秒前
7秒前
李Li发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
xiaohang发布了新的文献求助30
12秒前
xioaru发布了新的文献求助10
13秒前
王倩完成签到 ,获得积分10
14秒前
ZSWAA发布了新的文献求助10
14秒前
飞鸟发布了新的文献求助10
16秒前
欣喜的秋灵应助十九采纳,获得10
16秒前
17秒前
Progie应助果砸采纳,获得10
17秒前
CodeCraft应助xioaru采纳,获得10
18秒前
18秒前
坚强黎昕完成签到,获得积分10
20秒前
大糖糕僧完成签到 ,获得积分10
21秒前
科研混子发布了新的文献求助10
21秒前
Murray完成签到,获得积分0
22秒前
wgglegg完成签到,获得积分10
23秒前
小璐sunny发布了新的文献求助20
23秒前
24秒前
研友_VZG7GZ应助哈哈哈采纳,获得10
25秒前
25秒前
善学以致用应助Han采纳,获得30
27秒前
小马甲应助121采纳,获得10
28秒前
28秒前
卡其发布了新的文献求助10
30秒前
拼搏遥完成签到,获得积分20
31秒前
xioaru完成签到,获得积分20
32秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158017
求助须知:如何正确求助?哪些是违规求助? 2809393
关于积分的说明 7881798
捐赠科研通 2467878
什么是DOI,文献DOI怎么找? 1313757
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943