YOLO-FA: Type-1 fuzzy attention based YOLO detector for vehicle detection

计算机科学 人工智能 模糊逻辑 探测器 光学(聚焦) 卷积神经网络 模式识别(心理学) 计算机视觉 电信 物理 光学
作者
Kang Li,Zhiwei Lü,Lingyu Meng,Zhijian Gao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121209-121209 被引量:88
标识
DOI:10.1016/j.eswa.2023.121209
摘要

Vehicle detection is an important component of intelligent transportation systems and autonomous driving. However, in real-world vehicle detection scenarios, the presence of many complex and high uncertainty factors, such as illumination differences, motion blur, occlusion, weather, etc., makes accurate and real-time vehicle detection still challenging. In order to reduce the influence of these uncertainties in real scenarios and improve the accuracy and real-time performance of vehicle detection, this paper proposes a type-1 fuzzy attention (T1FA), in which fuzzy entropy is introduced to re-weight the feature map in order to reduce the uncertainty of the feature map and facilitates the detector's focus on the target center as a way to effectively improve the accuracy of vehicle detection. Furthermore, to detect vehicles with different sizes more effectively, mixed depth convolution in MetaFormer (MDFormer) is employed as a token mixer to capture multi-scale perceptual fields. And a novel YOLO detector based on fuzzy attention (YOLO-FA) is proposed. Experimental results show that T1FA can boost 3.2% AP50 on challenging vehicle detection dataset UA-DETRAC, which is better than other commonly used attention mechanisms, especially in scenarios of rain and nighttime with higher uncertainty by 4.2% and 8.1% AP50, respectively. Finally, without pretraining on extra data, YOLO-FA achieves 70.0% AP50 and 50.3% AP on UA-DETRAC, which achieves better balance between accuracy and speed compared with state-of-the-art detectors. The remarkable improvement of T1FA in different detectors and datasets also shows the considerable generalization of T1FA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助LoganLee采纳,获得10
1秒前
咖啡加盐完成签到,获得积分10
1秒前
聪聪咪完成签到,获得积分10
1秒前
cyh发布了新的文献求助10
1秒前
爆米花应助病毒遗传学采纳,获得10
2秒前
2秒前
2秒前
高兴绿柳发布了新的文献求助10
4秒前
安详的一曲完成签到 ,获得积分10
4秒前
4秒前
机智的青柏完成签到 ,获得积分10
5秒前
孙典匣完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
li发布了新的文献求助10
7秒前
realha完成签到,获得积分10
8秒前
8秒前
小蘑菇应助风中悟空采纳,获得10
11秒前
hgl发布了新的文献求助10
11秒前
赘婿应助子清采纳,获得10
11秒前
共享精神应助realha采纳,获得10
12秒前
JamesPei应助文静菠萝采纳,获得10
13秒前
江三村完成签到 ,获得积分0
14秒前
ning_qing完成签到 ,获得积分10
14秒前
且歌且行完成签到 ,获得积分10
14秒前
汉堡包应助畅快城采纳,获得10
15秒前
隐形曼青应助缓慢的秋莲采纳,获得10
15秒前
夜白完成签到 ,获得积分10
15秒前
16秒前
16秒前
听风轻语完成签到,获得积分10
16秒前
16秒前
SweetyTian发布了新的文献求助10
19秒前
Kyrie发布了新的文献求助10
19秒前
czr完成签到,获得积分10
19秒前
20秒前
赘婿应助li采纳,获得10
20秒前
善学以致用应助花砸采纳,获得10
20秒前
李健的小迷弟应助hgl采纳,获得10
22秒前
格拉希尔完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419305
求助须知:如何正确求助?哪些是违规求助? 4534635
关于积分的说明 14145936
捐赠科研通 4451213
什么是DOI,文献DOI怎么找? 2441631
邀请新用户注册赠送积分活动 1433223
关于科研通互助平台的介绍 1410533