YOLO-FA: Type-1 fuzzy attention based YOLO detector for vehicle detection

计算机科学 人工智能 模糊逻辑 探测器 光学(聚焦) 卷积神经网络 模式识别(心理学) 计算机视觉 电信 物理 光学
作者
Kang Li,Zhiwei Lü,Lingyu Meng,Zhijian Gao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121209-121209 被引量:62
标识
DOI:10.1016/j.eswa.2023.121209
摘要

Vehicle detection is an important component of intelligent transportation systems and autonomous driving. However, in real-world vehicle detection scenarios, the presence of many complex and high uncertainty factors, such as illumination differences, motion blur, occlusion, weather, etc., makes accurate and real-time vehicle detection still challenging. In order to reduce the influence of these uncertainties in real scenarios and improve the accuracy and real-time performance of vehicle detection, this paper proposes a type-1 fuzzy attention (T1FA), in which fuzzy entropy is introduced to re-weight the feature map in order to reduce the uncertainty of the feature map and facilitates the detector's focus on the target center as a way to effectively improve the accuracy of vehicle detection. Furthermore, to detect vehicles with different sizes more effectively, mixed depth convolution in MetaFormer (MDFormer) is employed as a token mixer to capture multi-scale perceptual fields. And a novel YOLO detector based on fuzzy attention (YOLO-FA) is proposed. Experimental results show that T1FA can boost 3.2% AP50 on challenging vehicle detection dataset UA-DETRAC, which is better than other commonly used attention mechanisms, especially in scenarios of rain and nighttime with higher uncertainty by 4.2% and 8.1% AP50, respectively. Finally, without pretraining on extra data, YOLO-FA achieves 70.0% AP50 and 50.3% AP on UA-DETRAC, which achieves better balance between accuracy and speed compared with state-of-the-art detectors. The remarkable improvement of T1FA in different detectors and datasets also shows the considerable generalization of T1FA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hlll完成签到 ,获得积分10
刚刚
刚刚
小杰完成签到,获得积分10
刚刚
刚刚
平常的紫真完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
凌晨五点发布了新的文献求助10
1秒前
DZ发布了新的文献求助10
1秒前
1秒前
领导范儿应助CROWN采纳,获得10
1秒前
漂亮的笑萍完成签到,获得积分20
1秒前
2秒前
SciGPT应助冰镇西瓜采纳,获得10
2秒前
明年发布了新的文献求助10
2秒前
luo发布了新的文献求助30
2秒前
2秒前
修仙中应助wyk采纳,获得10
2秒前
勿明完成签到,获得积分0
3秒前
DDDD发布了新的文献求助10
3秒前
科研通AI6应助受伤冰菱采纳,获得10
3秒前
情怀应助smm采纳,获得10
3秒前
SS发布了新的文献求助10
3秒前
3秒前
李健的粉丝团团长应助pp采纳,获得10
3秒前
3秒前
4秒前
鸣蜩阿六完成签到,获得积分10
4秒前
4秒前
迅速枕头发布了新的文献求助10
4秒前
万莎莎完成签到 ,获得积分10
5秒前
5秒前
5秒前
老实芷巧发布了新的文献求助10
5秒前
chenfaju完成签到,获得积分10
5秒前
Guo完成签到,获得积分10
5秒前
dyce完成签到,获得积分10
6秒前
3244190850发布了新的文献求助10
6秒前
大气乌冬面应助小鲸鱼采纳,获得50
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355