亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-spatiotemporal-resolution PM2.5 forecasting by hybrid deep learning models with ensembled massive heterogeneous monitoring data

均方误差 空气质量指数 自编码 深度学习 卷积神经网络 人工神经网络 计算机科学 平均绝对百分比误差 人工智能 数据挖掘 环境科学 实时计算 气象学 统计 数学 地理
作者
Kang Wu,I-Wen Hsia,Pu-Yun Kow,Li-Chiu Chang,Fi-John Chang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:433: 139825-139825 被引量:1
标识
DOI:10.1016/j.jclepro.2023.139825
摘要

High-resolution real-time air quality forecasting can alert decision-makers and residents about forthcoming air pollution events and refine air quality management. The Environmental Protection Administration in Taiwan has deployed numerous low-cost air quality microsensors near industrial zones lately to facilitate local air quality monitoring. Nevertheless, the frequent occurrence of missing sensor data due to problems of mobile transmission, frontend/backend device malfunction, or other unforeseen issues would raise difficulty in making quick responses to air pollution incidents. This study proposed a hybrid deep learning model (AE-CNN-BP) collaborating an Autoencoder (AE), a Convolutional Neural Network (CNN), and a Back Propagation Neural Network (BPNN) to effectively extract crucial features from big data for making successive high-spatiotemporal-resolution forecasts of PM2.5 concentrations 4 h ahead. The proposed model was trained and tested in three industrial zones densely installed with microsensors in Kaohsiung City of Taiwan. A high pollution incident was selected to evaluate model performance. The results show that the proposed model could reliably produce nice high-spatiotemporal-resolution forecasts for 12 air quality monitoring stations and 485 microsensors, with Coefficient of Determination (R2) values and Root Mean Squared Error (RMSE) of 0.82 (0.76) and 11.05 (12.75) μg/m3 in the training (testing) stage, respectively. For the selected incident, the Mean Absolute Percentage Error (MAPE) values of the proposed model were 22.3% and 27.1% at T+1 and T+4, respectively. This study demonstrates that the proposed deep learning model based on ensemble datasets of sparsely distributed monitoring stations and densely deployed microsensors can offer reliable high-spatiotemporal-resolution air quality forecasts, benefiting environmental studies and informed policymaking by accounting for local-scale variations in PM2.5 concentrations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溪灵发布了新的文献求助20
6秒前
啊啊啊完成签到 ,获得积分10
7秒前
14秒前
玉玉完成签到 ,获得积分20
28秒前
量子星尘发布了新的文献求助10
30秒前
ttkx完成签到,获得积分10
33秒前
40秒前
杨光发布了新的文献求助10
44秒前
江流儿完成签到 ,获得积分10
51秒前
SciGPT应助杨光采纳,获得10
52秒前
1分钟前
1分钟前
lcw1998完成签到 ,获得积分10
1分钟前
无限青槐发布了新的文献求助10
1分钟前
小蘑菇应助jinan采纳,获得10
1分钟前
溪灵完成签到,获得积分10
1分钟前
斯文败类应助shun采纳,获得10
1分钟前
阿俊完成签到 ,获得积分10
1分钟前
fandan完成签到 ,获得积分10
1分钟前
Eileen完成签到 ,获得积分0
1分钟前
香菜张完成签到,获得积分10
1分钟前
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助morena采纳,获得10
1分钟前
寻道图强完成签到,获得积分0
1分钟前
圈哥完成签到,获得积分10
1分钟前
pegasus0802完成签到,获得积分10
1分钟前
Ava应助无限青槐采纳,获得10
2分钟前
忧郁的火车完成签到,获得积分10
2分钟前
朝朝暮夕完成签到 ,获得积分10
2分钟前
闪闪的晓丝完成签到 ,获得积分10
2分钟前
酷波er应助观澜采纳,获得10
2分钟前
zqq完成签到,获得积分0
2分钟前
大个应助Ruby采纳,获得10
2分钟前
尘远知山静完成签到 ,获得积分10
2分钟前
bkagyin应助干羞花采纳,获得10
3分钟前
3分钟前
干羞花发布了新的文献求助10
3分钟前
3分钟前
JamesPei应助star采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622199
求助须知:如何正确求助?哪些是违规求助? 4707132
关于积分的说明 14938831
捐赠科研通 4769058
什么是DOI,文献DOI怎么找? 2552198
邀请新用户注册赠送积分活动 1514325
关于科研通互助平台的介绍 1475038