亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-spatiotemporal-resolution PM2.5 forecasting by hybrid deep learning models with ensembled massive heterogeneous monitoring data

均方误差 空气质量指数 自编码 深度学习 卷积神经网络 人工神经网络 计算机科学 平均绝对百分比误差 人工智能 数据挖掘 环境科学 实时计算 气象学 统计 数学 地理
作者
Kang Wu,I-Wen Hsia,Pu-Yun Kow,Li-Chiu Chang,Fi-John Chang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:433: 139825-139825 被引量:1
标识
DOI:10.1016/j.jclepro.2023.139825
摘要

High-resolution real-time air quality forecasting can alert decision-makers and residents about forthcoming air pollution events and refine air quality management. The Environmental Protection Administration in Taiwan has deployed numerous low-cost air quality microsensors near industrial zones lately to facilitate local air quality monitoring. Nevertheless, the frequent occurrence of missing sensor data due to problems of mobile transmission, frontend/backend device malfunction, or other unforeseen issues would raise difficulty in making quick responses to air pollution incidents. This study proposed a hybrid deep learning model (AE-CNN-BP) collaborating an Autoencoder (AE), a Convolutional Neural Network (CNN), and a Back Propagation Neural Network (BPNN) to effectively extract crucial features from big data for making successive high-spatiotemporal-resolution forecasts of PM2.5 concentrations 4 h ahead. The proposed model was trained and tested in three industrial zones densely installed with microsensors in Kaohsiung City of Taiwan. A high pollution incident was selected to evaluate model performance. The results show that the proposed model could reliably produce nice high-spatiotemporal-resolution forecasts for 12 air quality monitoring stations and 485 microsensors, with Coefficient of Determination (R2) values and Root Mean Squared Error (RMSE) of 0.82 (0.76) and 11.05 (12.75) μg/m3 in the training (testing) stage, respectively. For the selected incident, the Mean Absolute Percentage Error (MAPE) values of the proposed model were 22.3% and 27.1% at T+1 and T+4, respectively. This study demonstrates that the proposed deep learning model based on ensemble datasets of sparsely distributed monitoring stations and densely deployed microsensors can offer reliable high-spatiotemporal-resolution air quality forecasts, benefiting environmental studies and informed policymaking by accounting for local-scale variations in PM2.5 concentrations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
10秒前
shinn发布了新的文献求助10
16秒前
小智完成签到,获得积分10
16秒前
17秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
19秒前
小智发布了新的文献求助10
19秒前
耕云钓月发布了新的文献求助10
22秒前
25秒前
28秒前
32秒前
然463完成签到 ,获得积分10
32秒前
33秒前
33秒前
夜夜景发布了新的文献求助10
36秒前
37秒前
美美发布了新的文献求助10
40秒前
李爱国应助shinn采纳,获得10
40秒前
忆修发布了新的文献求助30
43秒前
52秒前
53秒前
53秒前
54秒前
ly发布了新的文献求助10
55秒前
LL完成签到 ,获得积分10
58秒前
shinn发布了新的文献求助10
59秒前
美美完成签到,获得积分10
59秒前
众人皆醉我独醒完成签到,获得积分10
1分钟前
1分钟前
BowieHuang应助oleskarabach采纳,获得10
1分钟前
1分钟前
patrickli发布了新的文献求助10
1分钟前
Tree_QD完成签到 ,获得积分10
1分钟前
Jasper应助Yikepp采纳,获得10
1分钟前
1分钟前
1分钟前
直率的醉冬完成签到,获得积分10
1分钟前
CipherSage应助shinn采纳,获得10
1分钟前
patrickli完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772534
求助须知:如何正确求助?哪些是违规求助? 5599698
关于积分的说明 15429759
捐赠科研通 4905497
什么是DOI,文献DOI怎么找? 2639436
邀请新用户注册赠送积分活动 1587360
关于科研通互助平台的介绍 1542247