High-spatiotemporal-resolution PM2.5 forecasting by hybrid deep learning models with ensembled massive heterogeneous monitoring data

均方误差 空气质量指数 自编码 深度学习 卷积神经网络 人工神经网络 计算机科学 平均绝对百分比误差 人工智能 数据挖掘 环境科学 实时计算 气象学 统计 数学 地理
作者
Kang Wu,I-Wen Hsia,Pu-Yun Kow,Li-Chiu Chang,Fi-John Chang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:433: 139825-139825 被引量:1
标识
DOI:10.1016/j.jclepro.2023.139825
摘要

High-resolution real-time air quality forecasting can alert decision-makers and residents about forthcoming air pollution events and refine air quality management. The Environmental Protection Administration in Taiwan has deployed numerous low-cost air quality microsensors near industrial zones lately to facilitate local air quality monitoring. Nevertheless, the frequent occurrence of missing sensor data due to problems of mobile transmission, frontend/backend device malfunction, or other unforeseen issues would raise difficulty in making quick responses to air pollution incidents. This study proposed a hybrid deep learning model (AE-CNN-BP) collaborating an Autoencoder (AE), a Convolutional Neural Network (CNN), and a Back Propagation Neural Network (BPNN) to effectively extract crucial features from big data for making successive high-spatiotemporal-resolution forecasts of PM2.5 concentrations 4 h ahead. The proposed model was trained and tested in three industrial zones densely installed with microsensors in Kaohsiung City of Taiwan. A high pollution incident was selected to evaluate model performance. The results show that the proposed model could reliably produce nice high-spatiotemporal-resolution forecasts for 12 air quality monitoring stations and 485 microsensors, with Coefficient of Determination (R2) values and Root Mean Squared Error (RMSE) of 0.82 (0.76) and 11.05 (12.75) μg/m3 in the training (testing) stage, respectively. For the selected incident, the Mean Absolute Percentage Error (MAPE) values of the proposed model were 22.3% and 27.1% at T+1 and T+4, respectively. This study demonstrates that the proposed deep learning model based on ensemble datasets of sparsely distributed monitoring stations and densely deployed microsensors can offer reliable high-spatiotemporal-resolution air quality forecasts, benefiting environmental studies and informed policymaking by accounting for local-scale variations in PM2.5 concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jeffyoung发布了新的文献求助10
刚刚
1秒前
乾乾完成签到,获得积分10
1秒前
ED应助李振博采纳,获得10
1秒前
文卿发布了新的文献求助10
1秒前
钙片儿完成签到,获得积分10
2秒前
清脆立果完成签到,获得积分10
3秒前
3秒前
粗犷的凌兰完成签到,获得积分10
3秒前
3秒前
panjunlu发布了新的文献求助10
3秒前
4秒前
www0717发布了新的文献求助10
4秒前
zzz完成签到,获得积分10
5秒前
研友_ZlxxzZ完成签到,获得积分10
5秒前
归尘应助XS_QI采纳,获得10
5秒前
6秒前
Attempter完成签到,获得积分20
6秒前
Du发布了新的文献求助10
6秒前
钙片儿发布了新的文献求助10
6秒前
7秒前
大眼睛的草莓完成签到,获得积分10
7秒前
文卿完成签到,获得积分10
7秒前
7秒前
酷酷李可爱婕完成签到 ,获得积分10
8秒前
乐乐应助张阳采纳,获得10
9秒前
9秒前
9秒前
领导范儿应助珂小小采纳,获得10
9秒前
666完成签到,获得积分10
9秒前
假装有昵称完成签到,获得积分10
9秒前
9秒前
zyy完成签到,获得积分10
10秒前
LinglongCai完成签到 ,获得积分10
11秒前
wdy111应助jjjjchou采纳,获得20
11秒前
胡博云完成签到,获得积分10
11秒前
11完成签到,获得积分10
12秒前
SL完成签到,获得积分10
12秒前
慕青应助笑点低的不采纳,获得10
12秒前
铜W完成签到,获得积分20
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582