Analysis of pre-crash scenarios and contributing factors for autonomous vehicle crashes at intersections

撞车 交叉口(航空) 运输工程 毒物控制 碰撞 工程类 计算机安全 计算机科学 环境卫生 医学 程序设计语言
作者
Qian Liu,Li Wang,Shikun Liu,Chunjun Yu,Yi Glaser
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:195: 107383-107383 被引量:14
标识
DOI:10.1016/j.aap.2023.107383
摘要

Intersections are high-risk locations for autonomous vehicles (AVs). Crash causation analysis based on pre-crash scenarios can provide new insight into these crashes that can lead to effective countermeasures, but there are significant differences in pre-crash scenarios between autonomous and conventional vehicles, and inadequate AV data has put limits on research. The association rule method, however, can yield useful results despite these limits. This study therefore aims to use the method with pre-crash scenarios to understand the characteristics and contributing factors of AV crashes at intersections from the latest 5-year AV crash data. Analysis of 197 AV crashes at intersections revealed 30 types of pre-crash scenarios. The rear-end crash (58.88%) and lane change crash (16.24%) were the most frequently occurring scenarios for AVs. The proportion of AVs being rear-ended by conventional vehicles was 58.38%. The main contributing factors of these two most common AV scenarios were identified by association rules and crash causes were analyzed from the perspective of AV decision-making. The main factors contributing to the AV rear-end scenario were location outside the intersection in the intersection-related area, traffic signal control, autonomous engaged mode, mixed-use or public land, and weekdays, while those for lane change scenarios were on-street parking and the time of 8:00 a.m. Important causes of rear-end crashes attributable to the AV were inadequate stop and deceleration decisions by the AV's automated driving system (ADS) and insufficient collision avoidance decisions in lane change crashes. Identification of the pre-crash characteristics and contributing factors provide new insight into AV crash causation and can be used in the determination of the AV's operational design domain and the development and optimization of the AV's ADS at intersections. These findings can also play a role in guiding traffic safety agencies to discover AV hotspots and propose AV management regulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YoYo发布了新的文献求助10
刚刚
豌豆发布了新的文献求助10
2秒前
3秒前
言叶完成签到,获得积分10
3秒前
4秒前
CipherSage应助清新的冷松采纳,获得10
4秒前
JamesPei应助Poyd采纳,获得10
5秒前
科目三应助药学牛马采纳,获得10
6秒前
lixm发布了新的文献求助10
7秒前
NAA完成签到,获得积分10
8秒前
8秒前
tao_blue完成签到,获得积分10
8秒前
荔枝完成签到,获得积分20
8秒前
8秒前
9秒前
许多知识完成签到,获得积分10
9秒前
缓慢的战斗机完成签到,获得积分20
10秒前
圣晟胜发布了新的文献求助10
10秒前
科研通AI5应助nextconnie采纳,获得10
11秒前
陈朝旧迹完成签到,获得积分10
11秒前
无花果应助虚心海燕采纳,获得10
12秒前
sun发布了新的文献求助30
13秒前
13秒前
KBYer完成签到,获得积分10
13秒前
FashionBoy应助阳阳采纳,获得10
13秒前
许多知识发布了新的文献求助10
14秒前
苏源智完成签到,获得积分10
14秒前
Andy完成签到 ,获得积分10
16秒前
明理晓霜发布了新的文献求助10
18秒前
ZHANGMANLI0422关注了科研通微信公众号
18秒前
M先生发布了新的文献求助30
19秒前
FashionBoy应助许多知识采纳,获得10
20秒前
Poyd完成签到,获得积分10
23秒前
23秒前
故意的傲玉应助tao_blue采纳,获得10
24秒前
24秒前
kid1912完成签到,获得积分0
24秒前
小马甲应助一网小海蜇采纳,获得10
27秒前
专一的笑阳完成签到 ,获得积分10
27秒前
xuesensu完成签到 ,获得积分10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849