Analysis of pre-crash scenarios and contributing factors for autonomous vehicle crashes at intersections

撞车 交叉口(航空) 运输工程 毒物控制 碰撞 工程类 计算机安全 计算机科学 环境卫生 医学 程序设计语言
作者
Qian Liu,Li Wang,Shikun Liu,Chunjun Yu,Yi Glaser
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:195: 107383-107383 被引量:14
标识
DOI:10.1016/j.aap.2023.107383
摘要

Intersections are high-risk locations for autonomous vehicles (AVs). Crash causation analysis based on pre-crash scenarios can provide new insight into these crashes that can lead to effective countermeasures, but there are significant differences in pre-crash scenarios between autonomous and conventional vehicles, and inadequate AV data has put limits on research. The association rule method, however, can yield useful results despite these limits. This study therefore aims to use the method with pre-crash scenarios to understand the characteristics and contributing factors of AV crashes at intersections from the latest 5-year AV crash data. Analysis of 197 AV crashes at intersections revealed 30 types of pre-crash scenarios. The rear-end crash (58.88%) and lane change crash (16.24%) were the most frequently occurring scenarios for AVs. The proportion of AVs being rear-ended by conventional vehicles was 58.38%. The main contributing factors of these two most common AV scenarios were identified by association rules and crash causes were analyzed from the perspective of AV decision-making. The main factors contributing to the AV rear-end scenario were location outside the intersection in the intersection-related area, traffic signal control, autonomous engaged mode, mixed-use or public land, and weekdays, while those for lane change scenarios were on-street parking and the time of 8:00 a.m. Important causes of rear-end crashes attributable to the AV were inadequate stop and deceleration decisions by the AV's automated driving system (ADS) and insufficient collision avoidance decisions in lane change crashes. Identification of the pre-crash characteristics and contributing factors provide new insight into AV crash causation and can be used in the determination of the AV's operational design domain and the development and optimization of the AV's ADS at intersections. These findings can also play a role in guiding traffic safety agencies to discover AV hotspots and propose AV management regulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nbdsljjd发布了新的文献求助10
刚刚
61forsci发布了新的文献求助50
刚刚
执着惜梦完成签到,获得积分10
1秒前
Jam完成签到,获得积分10
2秒前
Lliker发布了新的文献求助10
2秒前
3秒前
阿峰完成签到,获得积分10
4秒前
啊建发布了新的文献求助10
4秒前
QCB完成签到 ,获得积分10
5秒前
asd发布了新的文献求助10
5秒前
1111完成签到 ,获得积分10
6秒前
orixero应助Lliker采纳,获得10
8秒前
ppg123应助红泥小火炉采纳,获得10
10秒前
wang应助热心市民小红花采纳,获得50
11秒前
zha完成签到,获得积分10
11秒前
任性的老三完成签到,获得积分20
12秒前
初之发布了新的文献求助10
13秒前
HEIKU应助卷卷采纳,获得10
14秒前
GR完成签到,获得积分10
14秒前
sunguangbin完成签到,获得积分20
15秒前
18秒前
李健应助二二采纳,获得10
19秒前
19秒前
Ooo完成签到,获得积分10
20秒前
无心的秋珊完成签到 ,获得积分10
20秒前
初之完成签到,获得积分20
22秒前
23秒前
as发布了新的文献求助10
23秒前
杳鸢应助小哲采纳,获得200
23秒前
Ooo发布了新的文献求助10
23秒前
24秒前
圆圆完成签到,获得积分10
25秒前
26秒前
孙一应助KleinFC采纳,获得10
26秒前
28秒前
28秒前
HLB发布了新的文献求助10
30秒前
余雨梅发布了新的文献求助10
30秒前
卷卷完成签到,获得积分10
31秒前
duo完成签到,获得积分10
31秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262544
求助须知:如何正确求助?哪些是违规求助? 2903181
关于积分的说明 8324328
捐赠科研通 2573216
什么是DOI,文献DOI怎么找? 1398126
科研通“疑难数据库(出版商)”最低求助积分说明 654018
邀请新用户注册赠送积分活动 632623