A novel framework for motor bearing fault diagnosis based on multi-transformation domain and multi-source data

计算机科学 特征提取 人工智能 数据挖掘 自动汇总 传感器融合 可扩展性 模式识别(心理学) 多源 转化(遗传学) 领域(数学分析) 断层(地质) 特征(语言学) 机器学习 数据库 生物化学 统计 化学 数学 地震学 基因 地质学 数学分析 语言学 哲学
作者
Yingchao Xue,Chuanbo Wen,Zidong Wang,Weibo Liu,Guochu Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:283: 111205-111205 被引量:10
标识
DOI:10.1016/j.knosys.2023.111205
摘要

Through the application of deep learning and multi-sensor data, fault features can be automatically extracted and valuable information can be integrated to tackle intricate challenges in motor bearing fault diagnosis. Most existing fusion models focus primarily on the original time series signal with information extraction largely restricted to the time domain (without extensions into multiple transformation domains). Also, in most fusion models, the sensor fusion level is kept relatively simple which could lead to the oversight of correlations and complementarities among the information. To enhance the recognition capability of diagnostic network features, in this paper, we propose a novel framework for motor bearing fault diagnosis from the perspectives of multi-transformation domain and multi-source data fusion. Within this framework, feature extraction and fusion from various source data are achieved in the time domain, frequency domain, and time–frequency domain. Distinct independent networks are set up within these domains: one network is designated for overseeing feature fusion, while the others are dedicated to extracting features from individual sensors. To support the extraction of pivotal features across multiple fusion layers in various transformation domains, several fusion nodes are inserted between the layers of the multiple feature extraction networks and the feature summarization network. Furthermore, a channel attention mechanism is introduced as a fusion strategy that serves to pinpoint the significance of different features, thus enhancing the efficiency of feature extraction. Experimental evaluation reveals the efficacy of the proposed model and highlights its noteworthy performance attributes such as scalability and universality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
薛定谔的猫完成签到,获得积分10
3秒前
3秒前
kyt发布了新的文献求助10
4秒前
5秒前
lala完成签到,获得积分10
6秒前
6秒前
大个应助白白白采纳,获得10
6秒前
7秒前
科研牛马发布了新的文献求助10
8秒前
8秒前
cc发布了新的文献求助10
8秒前
kyt完成签到,获得积分10
10秒前
chenjiaye发布了新的文献求助10
12秒前
cc完成签到,获得积分10
15秒前
18秒前
19秒前
zhanghan发布了新的文献求助10
22秒前
清漪完成签到,获得积分10
22秒前
22秒前
文静的紫安完成签到,获得积分10
23秒前
juziyaya应助muncy采纳,获得50
23秒前
homo完成签到,获得积分20
25秒前
我是老大应助没有昵称采纳,获得10
26秒前
苦行僧完成签到,获得积分10
27秒前
酷波er应助乙二胺四乙酸采纳,获得10
27秒前
27秒前
科研通AI2S应助林lin采纳,获得10
28秒前
方向阳完成签到 ,获得积分10
29秒前
zhanghan完成签到,获得积分20
30秒前
小景毕业发布了新的文献求助10
31秒前
小蘑菇应助jiajia采纳,获得10
31秒前
Crane发布了新的文献求助10
31秒前
Freeman0721发布了新的文献求助10
32秒前
寂寞致幻完成签到,获得积分10
33秒前
33秒前
YL完成签到,获得积分20
35秒前
35秒前
35秒前
寻道图强应助lgm采纳,获得30
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141175
求助须知:如何正确求助?哪些是违规求助? 2792145
关于积分的说明 7801676
捐赠科研通 2448353
什么是DOI,文献DOI怎么找? 1302516
科研通“疑难数据库(出版商)”最低求助积分说明 626613
版权声明 601237