已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Abnormal Behavior Analysis for Surveillance in Poultry Farms using Deep Learning

计算机科学 人工智能
作者
Abdullah Magdy Elbarrany,Abdallah Mohialdin,Ayman Atia
标识
DOI:10.1109/imsa58542.2023.10217676
摘要

The poultry farming sector plays a vital role in supplying sustenance to an expanding population. Nevertheless, the birds' well-being remains a crucial issue, as inadequate living conditions result in abnormal behaviors that impact the productivity and health of the entire crowd. In order to improve and sustain the health of the birds, an automated surveillance system that monitors and analyzes chickens behaviors needs to take in place. The study of abnormal behavior analysis for surveillance in poultry farms is of essential importance in ensuring the health, welfare, and productivity of the birds. This research aims to develop a comprehensive understanding of the various factors contributing to abnormal behavior patterns and the methods for effectively monitoring and detecting these behaviors. By identifying and addressing issues related to illness, stress, or discomfort at an early stage using the proposed system, farmers can implement targeted interventions to improve the overall well-being of the birds, leading to enhanced production efficiency and profitability. Furthermore, this research contributes to the development of sustainable poultry farming practices, protecting public health, and safeguarding food safety, highlighting the significance of abnormal behavior analysis in the poultry industry. This paper proposes a computer vision based system that monitors and analyzes the chickens' behaviors in poultry farms. The system takes video input and segments them into 10-second segments. The proposed system achieves an accuracy of 96.43% using a convolutional neural network for heatmaps classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助qunqing3采纳,获得30
1秒前
落后的衬衫完成签到,获得积分10
1秒前
2秒前
2秒前
changliu完成签到,获得积分10
3秒前
3秒前
Akim应助Trey采纳,获得10
4秒前
5秒前
envdavid完成签到,获得积分10
5秒前
大椒完成签到 ,获得积分10
6秒前
HOLLYWOO完成签到 ,获得积分10
6秒前
何丽雅发布了新的文献求助30
6秒前
8秒前
Jessie发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
Lighten完成签到 ,获得积分10
9秒前
Lee完成签到,获得积分20
9秒前
12发布了新的文献求助10
9秒前
Jasper应助physicalproblem采纳,获得10
10秒前
10秒前
11秒前
11秒前
浮游应助瘦瘦问柳采纳,获得10
12秒前
12秒前
12秒前
星辰大海应助乐观的海采纳,获得30
12秒前
小二郎应助lin采纳,获得10
13秒前
庚午发布了新的文献求助10
13秒前
LLoud发布了新的文献求助10
14秒前
nangua发布了新的文献求助30
14秒前
15秒前
16秒前
16秒前
Dongbalal发布了新的文献求助10
16秒前
所所应助Sylas采纳,获得10
17秒前
17秒前
18秒前
丘比特应助落后的衬衫采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400986
求助须知:如何正确求助?哪些是违规求助? 4520031
关于积分的说明 14077904
捐赠科研通 4432951
什么是DOI,文献DOI怎么找? 2433919
邀请新用户注册赠送积分活动 1426111
关于科研通互助平台的介绍 1404733