已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Abnormal Behavior Analysis for Surveillance in Poultry Farms using Deep Learning

计算机科学 人工智能
作者
Abdullah Magdy Elbarrany,Abdallah Mohialdin,Ayman Atia
标识
DOI:10.1109/imsa58542.2023.10217676
摘要

The poultry farming sector plays a vital role in supplying sustenance to an expanding population. Nevertheless, the birds' well-being remains a crucial issue, as inadequate living conditions result in abnormal behaviors that impact the productivity and health of the entire crowd. In order to improve and sustain the health of the birds, an automated surveillance system that monitors and analyzes chickens behaviors needs to take in place. The study of abnormal behavior analysis for surveillance in poultry farms is of essential importance in ensuring the health, welfare, and productivity of the birds. This research aims to develop a comprehensive understanding of the various factors contributing to abnormal behavior patterns and the methods for effectively monitoring and detecting these behaviors. By identifying and addressing issues related to illness, stress, or discomfort at an early stage using the proposed system, farmers can implement targeted interventions to improve the overall well-being of the birds, leading to enhanced production efficiency and profitability. Furthermore, this research contributes to the development of sustainable poultry farming practices, protecting public health, and safeguarding food safety, highlighting the significance of abnormal behavior analysis in the poultry industry. This paper proposes a computer vision based system that monitors and analyzes the chickens' behaviors in poultry farms. The system takes video input and segments them into 10-second segments. The proposed system achieves an accuracy of 96.43% using a convolutional neural network for heatmaps classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瑶啊瑶完成签到,获得积分10
刚刚
欢喜妙旋发布了新的文献求助10
刚刚
刚刚
5秒前
6秒前
干净初彤发布了新的文献求助10
7秒前
欢喜妙旋完成签到,获得积分10
8秒前
Ava应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
HZHZHZ完成签到 ,获得积分10
9秒前
皮皮蛙发布了新的文献求助10
10秒前
安然发布了新的文献求助10
11秒前
执着南琴发布了新的文献求助20
12秒前
机灵白桃关注了科研通微信公众号
15秒前
17秒前
CHAYA发布了新的文献求助10
19秒前
日出完成签到,获得积分10
22秒前
可靠一德发布了新的文献求助10
23秒前
安然发布了新的文献求助10
26秒前
miabb关注了科研通微信公众号
28秒前
30秒前
Monster完成签到,获得积分10
32秒前
1820877108发布了新的文献求助10
33秒前
34秒前
羊羊完成签到 ,获得积分10
35秒前
调研昵称发布了新的文献求助10
35秒前
攀攀完成签到,获得积分10
35秒前
二毛完成签到 ,获得积分10
35秒前
37秒前
顾矜应助QQQ采纳,获得20
37秒前
37秒前
38秒前
yixueshng完成签到 ,获得积分10
40秒前
ZXG发布了新的文献求助10
43秒前
miabb发布了新的文献求助10
43秒前
45秒前
安然发布了新的文献求助10
48秒前
舒伯特完成签到 ,获得积分10
49秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484176
求助须知:如何正确求助?哪些是违规求助? 3073236
关于积分的说明 9130199
捐赠科研通 2764925
什么是DOI,文献DOI怎么找? 1517450
邀请新用户注册赠送积分活动 702131
科研通“疑难数据库(出版商)”最低求助积分说明 701095