已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Comprehensive Study for Predicting Chronic Kidney Disease, Diabetes, Hypertension, and Anemia by Machine Learning and Feature Engineering Techniques

肾脏疾病 糖尿病 逻辑回归 随机森林 人工智能 机器学习 接收机工作特性 医学 特征工程 计算机科学 预测建模 特征(语言学) 贫血 疾病 内科学 数据挖掘 深度学习 哲学 内分泌学 语言学
作者
Parama Sridevi,Masud Rabbani,Sheikh Iqbal Ahamed
标识
DOI:10.1109/icdh60066.2023.00043
摘要

Chronic Kidney Disease, Diabetes, Hypertension, and Anemia are affecting more people these days and causing serious deterioration in health conditions, which can cause death if left undiagnosed and untreated. Machine learning models can play an indispensable role in precisely predicting diseases at an early stage which can help doctors start the disease-management plan early and reduce the suffering of patients and the death rates. In this study, we propose machine learning based Chronic Kidney Disease, Diabetes, Hypertension, and Anemia Prediction. We analyzed Chronic_Kidney_Disease Data Set from the UCI repository. After data-prepossessing, we created four new datasets from the initial dataset for predicting the four diseases. We applied Feature Engineering on every dataset to identify the best features. We developed five machine learning based models and compared the models’ performance before and after Feature Engineering for every dataset. The Random Forest model performs best for chronic kidney disease prediction with an accuracy of 99.5%, validation score of 99.0%, and ROC-AUC score of 1.0. The Logistic Regression model gives the highest accuracy of 88.8%, validation score of 82.0%, and ROC-AUC score of 0.94 for predicting diabetes. For hypertension prediction, XGBoost outperforms other models with an accuracy of 88.8%, validation score of 83.2%, and ROCAUC score of 0.95. XGboost model best-predicted anemia with an accuracy of 88.8%, validation score of 91%, and ROC-AUC score of 0.91. Since the developed models can accurately perform these diseases’ predictions, we believe this study will be beneficial for the diagnosis and management of these diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
higgs完成签到,获得积分10
1秒前
1秒前
jiafang发布了新的文献求助10
2秒前
肖礼成发布了新的文献求助10
4秒前
脑洞疼应助CABBAGE采纳,获得30
5秒前
bylawa发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
敏感人杰发布了新的文献求助10
9秒前
LILYpig完成签到 ,获得积分10
11秒前
jiafang完成签到,获得积分10
12秒前
汉堡包应助山海之间采纳,获得10
14秒前
情怀应助jewelliang采纳,获得10
15秒前
FashionBoy应助Clarenceed采纳,获得10
18秒前
bylawa完成签到,获得积分10
20秒前
顾矜应助敏感人杰采纳,获得10
21秒前
sevenvictory应助1234采纳,获得10
22秒前
我是老大应助HS采纳,获得10
22秒前
29秒前
tdtk发布了新的文献求助10
31秒前
32秒前
34秒前
小明同学发布了新的文献求助10
35秒前
谦让的我喔完成签到 ,获得积分10
35秒前
35秒前
jewelliang发布了新的文献求助10
37秒前
超级飞侠完成签到,获得积分20
37秒前
Helly完成签到,获得积分10
40秒前
40秒前
42秒前
43秒前
Rylee完成签到,获得积分10
45秒前
汉堡包应助虚幻的绮烟采纳,获得10
46秒前
jewelliang完成签到,获得积分10
46秒前
49秒前
50秒前
小羊完成签到 ,获得积分10
51秒前
52秒前
53秒前
53秒前
小二郎应助石莫言采纳,获得10
53秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
宽量程高线性度柔性压力传感器的逆向设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980612
求助须知:如何正确求助?哪些是违规求助? 3524500
关于积分的说明 11221687
捐赠科研通 3261917
什么是DOI,文献DOI怎么找? 1800975
邀请新用户注册赠送积分活动 879568
科研通“疑难数据库(出版商)”最低求助积分说明 807320