A Comprehensive Study for Predicting Chronic Kidney Disease, Diabetes, Hypertension, and Anemia by Machine Learning and Feature Engineering Techniques

肾脏疾病 糖尿病 逻辑回归 随机森林 人工智能 机器学习 接收机工作特性 医学 特征工程 计算机科学 预测建模 特征(语言学) 贫血 疾病 内科学 数据挖掘 深度学习 语言学 哲学 内分泌学
作者
Parama Sridevi,Masud Rabbani,Sheikh Iqbal Ahamed
标识
DOI:10.1109/icdh60066.2023.00043
摘要

Chronic Kidney Disease, Diabetes, Hypertension, and Anemia are affecting more people these days and causing serious deterioration in health conditions, which can cause death if left undiagnosed and untreated. Machine learning models can play an indispensable role in precisely predicting diseases at an early stage which can help doctors start the disease-management plan early and reduce the suffering of patients and the death rates. In this study, we propose machine learning based Chronic Kidney Disease, Diabetes, Hypertension, and Anemia Prediction. We analyzed Chronic_Kidney_Disease Data Set from the UCI repository. After data-prepossessing, we created four new datasets from the initial dataset for predicting the four diseases. We applied Feature Engineering on every dataset to identify the best features. We developed five machine learning based models and compared the models’ performance before and after Feature Engineering for every dataset. The Random Forest model performs best for chronic kidney disease prediction with an accuracy of 99.5%, validation score of 99.0%, and ROC-AUC score of 1.0. The Logistic Regression model gives the highest accuracy of 88.8%, validation score of 82.0%, and ROC-AUC score of 0.94 for predicting diabetes. For hypertension prediction, XGBoost outperforms other models with an accuracy of 88.8%, validation score of 83.2%, and ROCAUC score of 0.95. XGboost model best-predicted anemia with an accuracy of 88.8%, validation score of 91%, and ROC-AUC score of 0.91. Since the developed models can accurately perform these diseases’ predictions, we believe this study will be beneficial for the diagnosis and management of these diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huihui完成签到,获得积分10
刚刚
跳跃保温杯完成签到,获得积分20
刚刚
贝塔完成签到 ,获得积分10
刚刚
123发布了新的文献求助10
1秒前
1秒前
1秒前
骄傲yy发布了新的文献求助10
2秒前
蟒玉朝天完成签到 ,获得积分10
2秒前
1256完成签到,获得积分10
2秒前
2秒前
hhhhhhhhhh发布了新的文献求助10
3秒前
你的完成签到 ,获得积分10
3秒前
浮游应助yyy采纳,获得10
4秒前
pxl99567发布了新的文献求助10
4秒前
4秒前
Lesile发布了新的文献求助10
4秒前
xikawu完成签到,获得积分10
4秒前
Zeal完成签到,获得积分10
5秒前
冷静完成签到,获得积分10
5秒前
6秒前
衾空发布了新的文献求助10
6秒前
dasheng完成签到,获得积分10
6秒前
喜悦的秋柔完成签到,获得积分10
6秒前
FashionBoy应助很合适采纳,获得10
6秒前
7秒前
7秒前
无花果应助xdc采纳,获得10
7秒前
123完成签到,获得积分10
8秒前
songsong丿完成签到,获得积分10
8秒前
姜姜发布了新的文献求助10
8秒前
zxx完成签到,获得积分10
9秒前
nine2652发布了新的文献求助10
9秒前
把得熙完成签到,获得积分10
10秒前
豆痘逗完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
假面完成签到,获得积分10
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651821
求助须知:如何正确求助?哪些是违规求助? 4786050
关于积分的说明 15056478
捐赠科研通 4810468
什么是DOI,文献DOI怎么找? 2573210
邀请新用户注册赠送积分活动 1529071
关于科研通互助平台的介绍 1488036