重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A Comprehensive Study for Predicting Chronic Kidney Disease, Diabetes, Hypertension, and Anemia by Machine Learning and Feature Engineering Techniques

肾脏疾病 糖尿病 逻辑回归 随机森林 人工智能 机器学习 接收机工作特性 医学 特征工程 计算机科学 预测建模 特征(语言学) 贫血 疾病 内科学 数据挖掘 深度学习 语言学 哲学 内分泌学
作者
Parama Sridevi,Masud Rabbani,Sheikh Iqbal Ahamed
标识
DOI:10.1109/icdh60066.2023.00043
摘要

Chronic Kidney Disease, Diabetes, Hypertension, and Anemia are affecting more people these days and causing serious deterioration in health conditions, which can cause death if left undiagnosed and untreated. Machine learning models can play an indispensable role in precisely predicting diseases at an early stage which can help doctors start the disease-management plan early and reduce the suffering of patients and the death rates. In this study, we propose machine learning based Chronic Kidney Disease, Diabetes, Hypertension, and Anemia Prediction. We analyzed Chronic_Kidney_Disease Data Set from the UCI repository. After data-prepossessing, we created four new datasets from the initial dataset for predicting the four diseases. We applied Feature Engineering on every dataset to identify the best features. We developed five machine learning based models and compared the models’ performance before and after Feature Engineering for every dataset. The Random Forest model performs best for chronic kidney disease prediction with an accuracy of 99.5%, validation score of 99.0%, and ROC-AUC score of 1.0. The Logistic Regression model gives the highest accuracy of 88.8%, validation score of 82.0%, and ROC-AUC score of 0.94 for predicting diabetes. For hypertension prediction, XGBoost outperforms other models with an accuracy of 88.8%, validation score of 83.2%, and ROCAUC score of 0.95. XGboost model best-predicted anemia with an accuracy of 88.8%, validation score of 91%, and ROC-AUC score of 0.91. Since the developed models can accurately perform these diseases’ predictions, we believe this study will be beneficial for the diagnosis and management of these diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyy1226发布了新的文献求助10
刚刚
古城小街发布了新的文献求助10
刚刚
kg5g完成签到,获得积分10
刚刚
酷波er应助Lee采纳,获得10
刚刚
Wenxianxiazai77完成签到,获得积分10
刚刚
1秒前
酷波er应助老实su采纳,获得10
1秒前
mjc秋发布了新的文献求助10
2秒前
Tangtang发布了新的文献求助10
2秒前
2秒前
2秒前
wjy发布了新的文献求助10
2秒前
潘潘发布了新的文献求助10
2秒前
3秒前
3秒前
搜集达人应助Mmmmm采纳,获得10
3秒前
周周发布了新的文献求助10
3秒前
3秒前
EKKO完成签到,获得积分10
3秒前
3秒前
SciGPT应助肖的花园采纳,获得10
3秒前
Owen应助香蕉若风采纳,获得30
3秒前
共享精神应助zyy采纳,获得10
4秒前
CS发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
乐观半凡发布了新的文献求助10
5秒前
5秒前
橙子发布了新的文献求助10
6秒前
汀沐完成签到 ,获得积分10
6秒前
orixero应助牛牛牛采纳,获得10
6秒前
大个应助wwwwww采纳,获得10
6秒前
寒生发布了新的文献求助10
6秒前
学渣小林发布了新的文献求助10
7秒前
大个应助jz采纳,获得10
7秒前
7秒前
CodeCraft应助Ent_采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567