A Comprehensive Study for Predicting Chronic Kidney Disease, Diabetes, Hypertension, and Anemia by Machine Learning and Feature Engineering Techniques

肾脏疾病 糖尿病 逻辑回归 随机森林 人工智能 机器学习 接收机工作特性 医学 特征工程 计算机科学 预测建模 特征(语言学) 贫血 疾病 内科学 数据挖掘 深度学习 语言学 哲学 内分泌学
作者
Parama Sridevi,Masud Rabbani,Sheikh Iqbal Ahamed
标识
DOI:10.1109/icdh60066.2023.00043
摘要

Chronic Kidney Disease, Diabetes, Hypertension, and Anemia are affecting more people these days and causing serious deterioration in health conditions, which can cause death if left undiagnosed and untreated. Machine learning models can play an indispensable role in precisely predicting diseases at an early stage which can help doctors start the disease-management plan early and reduce the suffering of patients and the death rates. In this study, we propose machine learning based Chronic Kidney Disease, Diabetes, Hypertension, and Anemia Prediction. We analyzed Chronic_Kidney_Disease Data Set from the UCI repository. After data-prepossessing, we created four new datasets from the initial dataset for predicting the four diseases. We applied Feature Engineering on every dataset to identify the best features. We developed five machine learning based models and compared the models’ performance before and after Feature Engineering for every dataset. The Random Forest model performs best for chronic kidney disease prediction with an accuracy of 99.5%, validation score of 99.0%, and ROC-AUC score of 1.0. The Logistic Regression model gives the highest accuracy of 88.8%, validation score of 82.0%, and ROC-AUC score of 0.94 for predicting diabetes. For hypertension prediction, XGBoost outperforms other models with an accuracy of 88.8%, validation score of 83.2%, and ROCAUC score of 0.95. XGboost model best-predicted anemia with an accuracy of 88.8%, validation score of 91%, and ROC-AUC score of 0.91. Since the developed models can accurately perform these diseases’ predictions, we believe this study will be beneficial for the diagnosis and management of these diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
包子完成签到,获得积分10
1秒前
1秒前
清萍红檀发布了新的文献求助10
1秒前
苏卿应助ok采纳,获得30
1秒前
肉脸小鱼完成签到 ,获得积分10
1秒前
情殇完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助半柚采纳,获得10
2秒前
灵巧代柔发布了新的文献求助10
2秒前
科研通AI5应助Andrew采纳,获得10
2秒前
共享精神应助科研小狗采纳,获得10
2秒前
xiaoyi发布了新的文献求助10
2秒前
科研通AI5应助冬05采纳,获得10
2秒前
垃圾鳴发布了新的文献求助30
3秒前
SciGPT应助欢_211采纳,获得10
3秒前
3秒前
胜天半子发布了新的文献求助10
3秒前
King16发布了新的文献求助10
4秒前
Symbol完成签到,获得积分10
4秒前
5秒前
younger发布了新的文献求助10
5秒前
顾矜应助ccalvintan采纳,获得10
5秒前
5秒前
BINGOFAN发布了新的文献求助10
6秒前
我的文献发布了新的文献求助10
6秒前
6秒前
CipherSage应助王又梅采纳,获得10
6秒前
WangT完成签到,获得积分10
7秒前
今后应助HYD采纳,获得10
7秒前
领导范儿应助jovrtic采纳,获得10
7秒前
CyrusSo524发布了新的文献求助10
8秒前
8秒前
坚强灵寒发布了新的文献求助10
9秒前
yuxiazhengye完成签到,获得积分10
9秒前
魏1122完成签到,获得积分10
9秒前
YY发布了新的文献求助10
9秒前
北艾尔发布了新的文献求助30
10秒前
无畏完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559313
求助须知:如何正确求助?哪些是违规求助? 3133962
关于积分的说明 9404827
捐赠科研通 2834076
什么是DOI,文献DOI怎么找? 1557790
邀请新用户注册赠送积分活动 727704
科研通“疑难数据库(出版商)”最低求助积分说明 716399