Examining the relationship between meteorological disaster economic impact and regional economic development in China

中国 经济影响分析 农业 库兹涅茨曲线 地理 自然资源经济学 经济增长 经济 考古 微观经济学
作者
Chengfang Huang,Ning Li,Zhengtao Zhang,Yuan Liu
出处
期刊:International journal of disaster risk reduction [Elsevier]
卷期号:100: 104133-104133 被引量:1
标识
DOI:10.1016/j.ijdrr.2023.104133
摘要

Economic impact of disaster is closely related to regional economic development, and the relationship between the two has been summarized as Kuznets or inverted-U curve. In this curve, direct and indirect economic loss (DEL, IEL) are the two key indicators to quantify the economic impact of disasters. However, due to the lack of input-output analysis, existing studies often ignore the importance of IEL. Therefore, based on the regional DEL of meteorological disasters in China from 2003 to 2019, this study quantitatively assesses the IEL due to the ripple effects of inter-regional industrial linkages by constructing the multi-regional input-output (MRIO) model. Study found that: (1) Economic impact of disasters is more severe in less developed inland areas and half as severe in more developed coastal areas. (2) Agriculture in less developed inland areas is more vulnerable and its DEL is higher than IEL, i.e., agricultural IEL in northwest is 41.6 % of DEL; while the secondary industry in more developed coastal areas has a more severe IEL. (3) Economic impact of disasters and economic development in China conform to the inverted-U curve, and has exceeded the peak of the curve and began to decline, economic impact has decreased by 77.8 % during study period with economic level increased by 6.6 times. In conclusion, China's economic development is conducive to reducing disaster economic impact, but regional differences need to be made clear in the formulation of policies, reducing the indirect impact should be more of a regional disaster reduction priority in more developed areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助zmy采纳,获得10
刚刚
善学以致用应助enoot采纳,获得10
1秒前
JamesPei应助失眠的血茗采纳,获得10
1秒前
青山发布了新的文献求助10
1秒前
亻鱼发布了新的文献求助10
2秒前
脑洞疼应助成就的小熊猫采纳,获得10
2秒前
2秒前
waterclouds完成签到 ,获得积分10
2秒前
圆圈儿完成签到,获得积分10
2秒前
司空剑封完成签到,获得积分10
3秒前
3秒前
海棠yiyi完成签到,获得积分10
3秒前
3秒前
梁小鑫发布了新的文献求助10
3秒前
Jenny应助圈圈采纳,获得10
4秒前
内向青文完成签到,获得积分10
4秒前
lefora完成签到,获得积分10
4秒前
丰知然应助CO2采纳,获得10
5秒前
Zhihu完成签到,获得积分10
5秒前
feng完成签到,获得积分10
6秒前
6秒前
美丽稀完成签到,获得积分10
7秒前
PXY应助屁王采纳,获得10
7秒前
sunburst完成签到,获得积分10
7秒前
狼主完成签到 ,获得积分10
7秒前
吕亦寒完成签到,获得积分10
7秒前
junzilan发布了新的文献求助10
8秒前
ZL发布了新的文献求助10
8秒前
8秒前
亻鱼完成签到,获得积分10
8秒前
超级蘑菇完成签到 ,获得积分10
9秒前
9秒前
9秒前
congguitar完成签到,获得积分10
9秒前
10秒前
limof完成签到,获得积分20
10秒前
跳跃聪健发布了新的文献求助10
10秒前
168521kf完成签到,获得积分10
10秒前
11秒前
Avatar完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740