已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Examining the relationship between meteorological disaster economic impact and regional economic development in China

中国 经济影响分析 农业 库兹涅茨曲线 地理 自然资源经济学 经济增长 经济 考古 微观经济学
作者
Chengfang Huang,Ning Li,Zhengtao Zhang,Yuan Liu
出处
期刊:International journal of disaster risk reduction [Elsevier]
卷期号:100: 104133-104133 被引量:6
标识
DOI:10.1016/j.ijdrr.2023.104133
摘要

Economic impact of disaster is closely related to regional economic development, and the relationship between the two has been summarized as Kuznets or inverted-U curve. In this curve, direct and indirect economic loss (DEL, IEL) are the two key indicators to quantify the economic impact of disasters. However, due to the lack of input-output analysis, existing studies often ignore the importance of IEL. Therefore, based on the regional DEL of meteorological disasters in China from 2003 to 2019, this study quantitatively assesses the IEL due to the ripple effects of inter-regional industrial linkages by constructing the multi-regional input-output (MRIO) model. Study found that: (1) Economic impact of disasters is more severe in less developed inland areas and half as severe in more developed coastal areas. (2) Agriculture in less developed inland areas is more vulnerable and its DEL is higher than IEL, i.e., agricultural IEL in northwest is 41.6 % of DEL; while the secondary industry in more developed coastal areas has a more severe IEL. (3) Economic impact of disasters and economic development in China conform to the inverted-U curve, and has exceeded the peak of the curve and began to decline, economic impact has decreased by 77.8 % during study period with economic level increased by 6.6 times. In conclusion, China's economic development is conducive to reducing disaster economic impact, but regional differences need to be made clear in the formulation of policies, reducing the indirect impact should be more of a regional disaster reduction priority in more developed areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲忆彤完成签到 ,获得积分10
4秒前
f1mike110发布了新的文献求助10
5秒前
洁净磬完成签到,获得积分20
5秒前
8秒前
搜集达人应助雨泽采纳,获得10
9秒前
抱抱龙完成签到 ,获得积分10
10秒前
骨科小李完成签到,获得积分10
10秒前
10秒前
搞科研完成签到,获得积分10
10秒前
old幽露露完成签到 ,获得积分10
11秒前
李学东完成签到,获得积分10
12秒前
科研通AI6.1应助WUHUIWEN采纳,获得10
12秒前
超级野狼完成签到,获得积分20
14秒前
15秒前
meditator发布了新的文献求助10
15秒前
善学以致用应助超级野狼采纳,获得10
18秒前
yuyu发布了新的文献求助10
19秒前
lige完成签到 ,获得积分10
19秒前
21秒前
奋斗的绝悟完成签到,获得积分10
21秒前
JamesPei应助洁净磬采纳,获得10
22秒前
22秒前
含蓄的静竹完成签到,获得积分10
23秒前
23秒前
111完成签到,获得积分10
23秒前
Dr.c完成签到,获得积分10
25秒前
宁过儿发布了新的文献求助20
26秒前
天天快乐应助卧待春雷采纳,获得10
27秒前
研友_GZbO18发布了新的文献求助10
29秒前
29秒前
FLY完成签到,获得积分10
30秒前
车哥爱学习完成签到,获得积分10
34秒前
起风了完成签到 ,获得积分10
34秒前
36秒前
Candy发布了新的文献求助10
38秒前
悦耳忆曼完成签到,获得积分10
40秒前
Ava应助yuyu采纳,获得10
41秒前
41秒前
伏狼壹号完成签到,获得积分10
43秒前
飞天小女警完成签到,获得积分20
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754502
求助须知:如何正确求助?哪些是违规求助? 5487138
关于积分的说明 15380163
捐赠科研通 4893049
什么是DOI,文献DOI怎么找? 2631710
邀请新用户注册赠送积分活动 1579665
关于科研通互助平台的介绍 1535387