Recent progress in digital image restoration techniques: A review

去模糊 图像复原 计算机科学 人工智能 卷积神经网络 数字图像 深度学习 数字成像 计算机视觉 图像处理 图像(数学)
作者
Aamir Wali,Asma Naseer,Maria Tamoor,S.A.M. Gilani
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:141: 104187-104187 被引量:17
标识
DOI:10.1016/j.dsp.2023.104187
摘要

Digital images are playing a progressively important role in almost all the fields such as computer science, medicine, communications, transmission, security, surveillance, and many more. Digital images are susceptible to a number of distortions due to faulty imaging instruments, transmission channels, atmospheric and environmental conditions, etc. resulting in degraded images. Degradation can be of different types such as noise, backscattering, low saturation, low contrast, tilt, spectral absorption, blurring, etc. The degradation reduces digital images' effectiveness and therefore needs to be restored. In this paper, we present an extensive review of image restoration tasks. It addresses problems like image deblurring, denoising, dehazing and super-resolution. Image restoration is fundamentally an image processing problem, but deep learning techniques, based mainly on convolutional neural networks have received a lot of attention in almost all areas of computer science. Along with deep learning, other machine learning methods have also been tried for restoring digital images. In this review, we have therefore categorized digital image restoration techniques as either image processing-based, machine learning-based or deep learning-based. For each category, a variety of approaches presented in recent years have been reviewed. This review also includes a summary of the data sets used for image restoration along with a baseline reference that can be used by future researchers to compare and improve their results. We also suggest some interesting research directions for future work in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
todd驳回了Su应助
刚刚
xiaofengyyy完成签到,获得积分10
刚刚
chhe发布了新的文献求助10
刚刚
小丹小丹完成签到 ,获得积分10
刚刚
Lyeming完成签到,获得积分10
2秒前
3秒前
怡然立轩完成签到 ,获得积分10
3秒前
kongshuai发布了新的文献求助30
3秒前
4秒前
浮游应助Unstoppable采纳,获得10
4秒前
烟花应助咔咔咔采纳,获得30
5秒前
SciGPT应助llp采纳,获得30
5秒前
6秒前
好好学习完成签到,获得积分10
7秒前
Tang发布了新的文献求助10
7秒前
9秒前
超帅乐荷发布了新的文献求助30
9秒前
充电宝应助tao采纳,获得10
9秒前
10秒前
11秒前
11秒前
11秒前
生动的小蝴蝶完成签到,获得积分10
12秒前
13秒前
14秒前
瘦瘦摇伽完成签到 ,获得积分10
15秒前
璇子发布了新的文献求助10
15秒前
科研通AI5应助tao采纳,获得10
15秒前
16秒前
Ameliaykh完成签到,获得积分10
16秒前
753AA发布了新的文献求助10
16秒前
浪里白条发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
caoyonggang发布了新的文献求助10
18秒前
19秒前
19秒前
James完成签到,获得积分10
21秒前
远了个方发布了新的文献求助10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125100
求助须知:如何正确求助?哪些是违规求助? 4329107
关于积分的说明 13489886
捐赠科研通 4163829
什么是DOI,文献DOI怎么找? 2282591
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222983