Recent progress in digital image restoration techniques: A review

去模糊 图像复原 计算机科学 人工智能 卷积神经网络 数字图像 深度学习 数字成像 计算机视觉 图像处理 图像(数学)
作者
Aamir Wali,Asma Naseer,Maria Tamoor,S.A.M. Gilani
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:141: 104187-104187 被引量:17
标识
DOI:10.1016/j.dsp.2023.104187
摘要

Digital images are playing a progressively important role in almost all the fields such as computer science, medicine, communications, transmission, security, surveillance, and many more. Digital images are susceptible to a number of distortions due to faulty imaging instruments, transmission channels, atmospheric and environmental conditions, etc. resulting in degraded images. Degradation can be of different types such as noise, backscattering, low saturation, low contrast, tilt, spectral absorption, blurring, etc. The degradation reduces digital images' effectiveness and therefore needs to be restored. In this paper, we present an extensive review of image restoration tasks. It addresses problems like image deblurring, denoising, dehazing and super-resolution. Image restoration is fundamentally an image processing problem, but deep learning techniques, based mainly on convolutional neural networks have received a lot of attention in almost all areas of computer science. Along with deep learning, other machine learning methods have also been tried for restoring digital images. In this review, we have therefore categorized digital image restoration techniques as either image processing-based, machine learning-based or deep learning-based. For each category, a variety of approaches presented in recent years have been reviewed. This review also includes a summary of the data sets used for image restoration along with a baseline reference that can be used by future researchers to compare and improve their results. We also suggest some interesting research directions for future work in this area.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jrssion发布了新的文献求助10
刚刚
Jrssion发布了新的文献求助10
刚刚
maomao1986发布了新的文献求助30
1秒前
ssf5910发布了新的文献求助10
3秒前
yuanjie发布了新的文献求助10
4秒前
5秒前
TY完成签到 ,获得积分10
5秒前
11关闭了11文献求助
6秒前
ATTENTION完成签到,获得积分10
6秒前
xiaoming完成签到 ,获得积分10
7秒前
zzy关注了科研通微信公众号
7秒前
8秒前
CipherSage应助美好储采纳,获得10
9秒前
哈喽完成签到 ,获得积分10
11秒前
小白发布了新的文献求助10
13秒前
贪玩的谷兰完成签到,获得积分10
13秒前
杨卓甲完成签到 ,获得积分10
20秒前
22秒前
23秒前
zxdzaz完成签到 ,获得积分10
26秒前
ding应助hyhyhyhy采纳,获得10
26秒前
zzy完成签到,获得积分10
26秒前
白青梅发布了新的文献求助10
29秒前
欢喜的亦竹完成签到,获得积分10
29秒前
传奇3应助我又可以了采纳,获得30
30秒前
LuoYR@SZU完成签到,获得积分10
30秒前
科研通AI6.1应助小白采纳,获得10
31秒前
张利奥完成签到 ,获得积分10
37秒前
sskk发布了新的文献求助10
38秒前
41秒前
斯文败类应助山楂采纳,获得10
43秒前
46秒前
不爱吃韭菜完成签到 ,获得积分10
46秒前
48秒前
清欢发布了新的文献求助10
49秒前
一二发布了新的文献求助10
50秒前
青山完成签到,获得积分10
51秒前
orixero应助跳跃从雪采纳,获得10
51秒前
52秒前
852应助马儿咯咯哒采纳,获得10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869551
求助须知:如何正确求助?哪些是违规求助? 6453169
关于积分的说明 15661332
捐赠科研通 4985385
什么是DOI,文献DOI怎么找? 2688390
邀请新用户注册赠送积分活动 1630820
关于科研通互助平台的介绍 1588927