Recent progress in digital image restoration techniques: A review

去模糊 图像复原 计算机科学 人工智能 卷积神经网络 数字图像 深度学习 数字成像 计算机视觉 图像处理 图像(数学)
作者
Aamir Wali,Asma Naseer,Maria Tamoor,S.A.M. Gilani
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:141: 104187-104187 被引量:17
标识
DOI:10.1016/j.dsp.2023.104187
摘要

Digital images are playing a progressively important role in almost all the fields such as computer science, medicine, communications, transmission, security, surveillance, and many more. Digital images are susceptible to a number of distortions due to faulty imaging instruments, transmission channels, atmospheric and environmental conditions, etc. resulting in degraded images. Degradation can be of different types such as noise, backscattering, low saturation, low contrast, tilt, spectral absorption, blurring, etc. The degradation reduces digital images' effectiveness and therefore needs to be restored. In this paper, we present an extensive review of image restoration tasks. It addresses problems like image deblurring, denoising, dehazing and super-resolution. Image restoration is fundamentally an image processing problem, but deep learning techniques, based mainly on convolutional neural networks have received a lot of attention in almost all areas of computer science. Along with deep learning, other machine learning methods have also been tried for restoring digital images. In this review, we have therefore categorized digital image restoration techniques as either image processing-based, machine learning-based or deep learning-based. For each category, a variety of approaches presented in recent years have been reviewed. This review also includes a summary of the data sets used for image restoration along with a baseline reference that can be used by future researchers to compare and improve their results. We also suggest some interesting research directions for future work in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助小雨采纳,获得10
1秒前
薇薇安完成签到,获得积分10
1秒前
瘦瘦的依玉完成签到,获得积分10
2秒前
山城小丸发布了新的文献求助10
3秒前
mrjohn完成签到,获得积分10
4秒前
allzzwell完成签到 ,获得积分10
4秒前
4秒前
彭于晏应助科研通管家采纳,获得10
5秒前
dong应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
dong应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
5秒前
8秒前
8秒前
Fighter发布了新的文献求助10
9秒前
DENANANA完成签到 ,获得积分20
9秒前
Zjx发布了新的文献求助10
12秒前
GGbound完成签到,获得积分10
13秒前
mlll发布了新的文献求助10
13秒前
16秒前
19秒前
希望天下0贩的0应助mlll采纳,获得10
20秒前
GGbound发布了新的文献求助10
20秒前
21秒前
21秒前
syp完成签到,获得积分10
24秒前
电致阿光发布了新的文献求助10
24秒前
25秒前
lidongxing发布了新的文献求助10
25秒前
syp发布了新的文献求助10
27秒前
27秒前
所所应助wise111采纳,获得10
28秒前
31秒前
哆啦猫发布了新的文献求助10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993151
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264447
捐赠科研通 3273745
什么是DOI,文献DOI怎么找? 1806151
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652