Recent progress in digital image restoration techniques: A review

去模糊 图像复原 计算机科学 人工智能 卷积神经网络 数字图像 深度学习 数字成像 计算机视觉 图像处理 图像(数学)
作者
Aamir Wali,Asma Naseer,Maria Tamoor,S.A.M. Gilani
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:141: 104187-104187 被引量:17
标识
DOI:10.1016/j.dsp.2023.104187
摘要

Digital images are playing a progressively important role in almost all the fields such as computer science, medicine, communications, transmission, security, surveillance, and many more. Digital images are susceptible to a number of distortions due to faulty imaging instruments, transmission channels, atmospheric and environmental conditions, etc. resulting in degraded images. Degradation can be of different types such as noise, backscattering, low saturation, low contrast, tilt, spectral absorption, blurring, etc. The degradation reduces digital images' effectiveness and therefore needs to be restored. In this paper, we present an extensive review of image restoration tasks. It addresses problems like image deblurring, denoising, dehazing and super-resolution. Image restoration is fundamentally an image processing problem, but deep learning techniques, based mainly on convolutional neural networks have received a lot of attention in almost all areas of computer science. Along with deep learning, other machine learning methods have also been tried for restoring digital images. In this review, we have therefore categorized digital image restoration techniques as either image processing-based, machine learning-based or deep learning-based. For each category, a variety of approaches presented in recent years have been reviewed. This review also includes a summary of the data sets used for image restoration along with a baseline reference that can be used by future researchers to compare and improve their results. We also suggest some interesting research directions for future work in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助st采纳,获得10
1秒前
浮游应助st采纳,获得10
1秒前
Jasper应助危机的雍采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
FashionBoy应助icey采纳,获得10
3秒前
桐桐应助Rgly采纳,获得10
4秒前
Lucas应助子清采纳,获得10
4秒前
要减肥的书蕾关注了科研通微信公众号
4秒前
Akim应助无量采纳,获得10
4秒前
5秒前
华仔应助蘑菇腿采纳,获得10
6秒前
6秒前
香蕉觅云应助TiAmo采纳,获得10
6秒前
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得100
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
PPP完成签到,获得积分10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
清和漾完成签到,获得积分10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424545
求助须知:如何正确求助?哪些是违规求助? 4538904
关于积分的说明 14164157
捐赠科研通 4455851
什么是DOI,文献DOI怎么找? 2443924
邀请新用户注册赠送积分活动 1435060
关于科研通互助平台的介绍 1412438