亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Forecasting Renewable Energy Generation Based on a Novel Dynamic Accumulation Grey Seasonal Model

可再生能源 发电 水力发电 水准点(测量) 环境经济学 风力发电 豆马勃属 能源安全 计算机科学 储能 工程类 功率(物理) 经济 物理 电气工程 地理 量子力学 大地测量学
作者
Weijie Zhou,H Jiang,Jiaxin Chang
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (16): 12188-12188 被引量:7
标识
DOI:10.3390/su151612188
摘要

With the increasing proportion of electricity in global end-energy consumption, it has become a global consensus that there is a need to develop more environmentally efficient renewable energy generation methods to gradually replace traditional high-pollution fossil energy power generation. Renewable energy generation has become an important method of supplying power across the world. Therefore, the accurate prediction of renewable energy generation plays a vital role in maintaining the security of electricity supply in all countries. Based on this, in our study, a novel dynamic accumulation grey seasonal model is constructed, abbreviated to DPDGSTM(1,1), which is suitable for forecasting mid- to long-term renewable energy generation. Specifically, to overcome the over-accumulation and old information disturbance caused by traditional global accumulation, a dynamic accumulation generation operator is introduced based on a data-driven model, which can adaptively select the optimal partial accumulation number according to the intrinsic characteristics of a sequence. Subsequently, dummy variables and a time trend item are integrated into the model structure, significantly enhancing the adaptability of the new model to the sample sequence with different fluctuation trends. Finally, a series of benchmark models are used to predict renewable energy generation in China, wind power generation in the United States, and hydropower generation in India. The empirical results show that the new model performs better than other benchmark models and is an effective tool for the mid- to long-term prediction of renewable energy generation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
景清完成签到 ,获得积分10
10秒前
顾矜应助kekao采纳,获得10
13秒前
wanci应助Xhnz采纳,获得10
14秒前
24秒前
Xhnz发布了新的文献求助10
29秒前
38秒前
隐形曼青应助Xhnz采纳,获得10
38秒前
49秒前
1分钟前
1分钟前
1分钟前
1分钟前
lsl应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
情怀应助动听海露采纳,获得10
2分钟前
2分钟前
2分钟前
动听海露发布了新的文献求助10
2分钟前
昏睡的梦安完成签到 ,获得积分10
3分钟前
3分钟前
宁不正发布了新的文献求助10
3分钟前
3分钟前
lsl应助科研通管家采纳,获得10
3分钟前
wanci应助宁不正采纳,获得10
3分钟前
Trivers发布了新的文献求助10
3分钟前
Freeasy完成签到 ,获得积分10
3分钟前
Trivers完成签到,获得积分10
3分钟前
3分钟前
kekao发布了新的文献求助10
3分钟前
brwen完成签到,获得积分10
4分钟前
鲸鱼完成签到 ,获得积分10
4分钟前
科研通AI6应助kekao采纳,获得10
4分钟前
4分钟前
Xhnz发布了新的文献求助10
4分钟前
4分钟前
中華人民共和完成签到,获得积分10
4分钟前
传奇3应助zzzz采纳,获得10
4分钟前
4分钟前
gravity完成签到,获得积分10
4分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644707
求助须知:如何正确求助?哪些是违规求助? 4765184
关于积分的说明 15025524
捐赠科研通 4803066
什么是DOI,文献DOI怎么找? 2567894
邀请新用户注册赠送积分活动 1525458
关于科研通互助平台的介绍 1484992