Forecasting Renewable Energy Generation Based on a Novel Dynamic Accumulation Grey Seasonal Model

可再生能源 发电 水力发电 水准点(测量) 环境经济学 风力发电 豆马勃属 能源安全 计算机科学 储能 工程类 功率(物理) 经济 物理 电气工程 地理 量子力学 大地测量学
作者
Weijie Zhou,H Jiang,Jiaxin Chang
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (16): 12188-12188 被引量:7
标识
DOI:10.3390/su151612188
摘要

With the increasing proportion of electricity in global end-energy consumption, it has become a global consensus that there is a need to develop more environmentally efficient renewable energy generation methods to gradually replace traditional high-pollution fossil energy power generation. Renewable energy generation has become an important method of supplying power across the world. Therefore, the accurate prediction of renewable energy generation plays a vital role in maintaining the security of electricity supply in all countries. Based on this, in our study, a novel dynamic accumulation grey seasonal model is constructed, abbreviated to DPDGSTM(1,1), which is suitable for forecasting mid- to long-term renewable energy generation. Specifically, to overcome the over-accumulation and old information disturbance caused by traditional global accumulation, a dynamic accumulation generation operator is introduced based on a data-driven model, which can adaptively select the optimal partial accumulation number according to the intrinsic characteristics of a sequence. Subsequently, dummy variables and a time trend item are integrated into the model structure, significantly enhancing the adaptability of the new model to the sample sequence with different fluctuation trends. Finally, a series of benchmark models are used to predict renewable energy generation in China, wind power generation in the United States, and hydropower generation in India. The empirical results show that the new model performs better than other benchmark models and is an effective tool for the mid- to long-term prediction of renewable energy generation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小熊完成签到,获得积分10
1秒前
黑苹果完成签到,获得积分0
1秒前
1秒前
2秒前
2秒前
2秒前
bkagyin应助徐biao采纳,获得10
2秒前
2秒前
黑大帅完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
迅速大山发布了新的文献求助10
3秒前
潘莘遥发布了新的文献求助10
3秒前
雨中小王应助刘澳采纳,获得10
3秒前
动听的秋灵完成签到,获得积分10
3秒前
4秒前
所所应助王士豪采纳,获得10
4秒前
深情安青应助TTT采纳,获得10
4秒前
SallyChen发布了新的文献求助30
4秒前
4秒前
七点半的闹钟完成签到,获得积分20
4秒前
小颜发布了新的文献求助10
5秒前
王一一发布了新的文献求助10
5秒前
诚心无颜发布了新的文献求助10
5秒前
MA完成签到,获得积分10
5秒前
jerkran完成签到,获得积分10
5秒前
清欢发布了新的文献求助20
6秒前
所谓完成签到,获得积分10
6秒前
AbleTF发布了新的文献求助10
6秒前
彭于晏应助潘朒朒采纳,获得10
6秒前
7秒前
7秒前
7秒前
Marine_Geo发布了新的文献求助10
7秒前
7秒前
田様应助眯眯眼的世界采纳,获得10
7秒前
房靳完成签到,获得积分10
8秒前
谁家那小谁完成签到,获得积分10
8秒前
充电宝应助姜少采纳,获得10
8秒前
8秒前
司佳雨完成签到,获得积分10
8秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585371
求助须知:如何正确求助?哪些是违规求助? 4669245
关于积分的说明 14775627
捐赠科研通 4617988
什么是DOI,文献DOI怎么找? 2530541
邀请新用户注册赠送积分活动 1499200
关于科研通互助平台的介绍 1467671