Forecasting Renewable Energy Generation Based on a Novel Dynamic Accumulation Grey Seasonal Model

可再生能源 发电 水力发电 水准点(测量) 环境经济学 风力发电 豆马勃属 能源安全 计算机科学 储能 工程类 功率(物理) 经济 物理 电气工程 地理 量子力学 大地测量学
作者
Weijie Zhou,H Jiang,Jiaxin Chang
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (16): 12188-12188 被引量:7
标识
DOI:10.3390/su151612188
摘要

With the increasing proportion of electricity in global end-energy consumption, it has become a global consensus that there is a need to develop more environmentally efficient renewable energy generation methods to gradually replace traditional high-pollution fossil energy power generation. Renewable energy generation has become an important method of supplying power across the world. Therefore, the accurate prediction of renewable energy generation plays a vital role in maintaining the security of electricity supply in all countries. Based on this, in our study, a novel dynamic accumulation grey seasonal model is constructed, abbreviated to DPDGSTM(1,1), which is suitable for forecasting mid- to long-term renewable energy generation. Specifically, to overcome the over-accumulation and old information disturbance caused by traditional global accumulation, a dynamic accumulation generation operator is introduced based on a data-driven model, which can adaptively select the optimal partial accumulation number according to the intrinsic characteristics of a sequence. Subsequently, dummy variables and a time trend item are integrated into the model structure, significantly enhancing the adaptability of the new model to the sample sequence with different fluctuation trends. Finally, a series of benchmark models are used to predict renewable energy generation in China, wind power generation in the United States, and hydropower generation in India. The empirical results show that the new model performs better than other benchmark models and is an effective tool for the mid- to long-term prediction of renewable energy generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助大胆铃铛采纳,获得10
1秒前
2秒前
传奇3应助jxcandice采纳,获得10
4秒前
4秒前
UNVS关注了科研通微信公众号
4秒前
kaka发布了新的文献求助10
5秒前
CipherSage应助fplh33采纳,获得10
5秒前
6秒前
天天快乐应助无奈的若风采纳,获得10
7秒前
爱笑以松完成签到,获得积分10
7秒前
8秒前
9秒前
刘泽完成签到,获得积分10
9秒前
9秒前
xxfsx应助李思雨采纳,获得10
9秒前
温柔夏蓉发布了新的文献求助10
10秒前
11秒前
Rachel完成签到,获得积分10
12秒前
独自受罪发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
白河发布了新的文献求助10
13秒前
14秒前
14秒前
16秒前
欣喜的秋蝶完成签到,获得积分10
17秒前
天堑无涯完成签到,获得积分20
17秒前
17秒前
18秒前
果子完成签到 ,获得积分10
19秒前
patience发布了新的文献求助10
20秒前
20秒前
大胆铃铛发布了新的文献求助10
20秒前
20秒前
20秒前
豆子完成签到,获得积分10
20秒前
年轻纸飞机完成签到 ,获得积分10
20秒前
Mic应助lyw采纳,获得10
21秒前
moub完成签到,获得积分20
21秒前
UNVS发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424308
求助须知:如何正确求助?哪些是违规求助? 4538684
关于积分的说明 14163217
捐赠科研通 4455559
什么是DOI,文献DOI怎么找? 2443800
邀请新用户注册赠送积分活动 1434944
关于科研通互助平台的介绍 1412304