Forecasting Renewable Energy Generation Based on a Novel Dynamic Accumulation Grey Seasonal Model

可再生能源 发电 水力发电 水准点(测量) 环境经济学 风力发电 豆马勃属 能源安全 计算机科学 储能 工程类 功率(物理) 经济 物理 电气工程 地理 量子力学 大地测量学
作者
Weijie Zhou,H Jiang,Jiaxin Chang
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:15 (16): 12188-12188 被引量:7
标识
DOI:10.3390/su151612188
摘要

With the increasing proportion of electricity in global end-energy consumption, it has become a global consensus that there is a need to develop more environmentally efficient renewable energy generation methods to gradually replace traditional high-pollution fossil energy power generation. Renewable energy generation has become an important method of supplying power across the world. Therefore, the accurate prediction of renewable energy generation plays a vital role in maintaining the security of electricity supply in all countries. Based on this, in our study, a novel dynamic accumulation grey seasonal model is constructed, abbreviated to DPDGSTM(1,1), which is suitable for forecasting mid- to long-term renewable energy generation. Specifically, to overcome the over-accumulation and old information disturbance caused by traditional global accumulation, a dynamic accumulation generation operator is introduced based on a data-driven model, which can adaptively select the optimal partial accumulation number according to the intrinsic characteristics of a sequence. Subsequently, dummy variables and a time trend item are integrated into the model structure, significantly enhancing the adaptability of the new model to the sample sequence with different fluctuation trends. Finally, a series of benchmark models are used to predict renewable energy generation in China, wind power generation in the United States, and hydropower generation in India. The empirical results show that the new model performs better than other benchmark models and is an effective tool for the mid- to long-term prediction of renewable energy generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助大白采纳,获得10
刚刚
Dejavue发布了新的文献求助10
2秒前
catch完成签到,获得积分10
2秒前
Zhai发布了新的文献求助10
3秒前
5秒前
这次会赢吗完成签到,获得积分10
5秒前
kirto完成签到,获得积分10
7秒前
an完成签到,获得积分10
7秒前
踏实十八发布了新的文献求助10
7秒前
刘梓应助眼睛大天思采纳,获得20
7秒前
努力加油煤老八完成签到 ,获得积分0
7秒前
刘佳完成签到 ,获得积分10
9秒前
sinlar发布了新的文献求助10
9秒前
Dejavue完成签到,获得积分10
10秒前
10秒前
SciGPT应助七七采纳,获得10
12秒前
张六六发布了新的文献求助10
12秒前
YXYYXY完成签到,获得积分10
13秒前
JamesPei应助赵一采纳,获得10
14秒前
酷波er应助crybaby采纳,获得10
14秒前
15秒前
小二郎应助LM采纳,获得10
15秒前
孤独的芒果完成签到,获得积分10
16秒前
16秒前
华仔应助田小冉采纳,获得10
16秒前
16秒前
苏苏完成签到 ,获得积分10
17秒前
17秒前
17秒前
想看不眠日记完成签到,获得积分10
18秒前
小恐龙完成签到,获得积分10
18秒前
xueyuanli完成签到,获得积分10
20秒前
麦客完成签到,获得积分10
20秒前
叨叨发布了新的文献求助10
20秒前
乐乐应助qwerty123456采纳,获得10
21秒前
复杂忻完成签到,获得积分10
22秒前
哈哈王发布了新的文献求助10
22秒前
夬鉲发布了新的文献求助10
22秒前
li完成签到 ,获得积分10
22秒前
dengdengdeng发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109850
求助须知:如何正确求助?哪些是违规求助? 4318475
关于积分的说明 13454352
捐赠科研通 4148445
什么是DOI,文献DOI怎么找? 2273185
邀请新用户注册赠送积分活动 1275349
关于科研通互助平台的介绍 1213641