Forecasting Renewable Energy Generation Based on a Novel Dynamic Accumulation Grey Seasonal Model

可再生能源 发电 水力发电 水准点(测量) 环境经济学 风力发电 豆马勃属 能源安全 计算机科学 储能 工程类 功率(物理) 经济 物理 电气工程 地理 量子力学 大地测量学
作者
Weijie Zhou,H Jiang,Jiaxin Chang
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (16): 12188-12188 被引量:7
标识
DOI:10.3390/su151612188
摘要

With the increasing proportion of electricity in global end-energy consumption, it has become a global consensus that there is a need to develop more environmentally efficient renewable energy generation methods to gradually replace traditional high-pollution fossil energy power generation. Renewable energy generation has become an important method of supplying power across the world. Therefore, the accurate prediction of renewable energy generation plays a vital role in maintaining the security of electricity supply in all countries. Based on this, in our study, a novel dynamic accumulation grey seasonal model is constructed, abbreviated to DPDGSTM(1,1), which is suitable for forecasting mid- to long-term renewable energy generation. Specifically, to overcome the over-accumulation and old information disturbance caused by traditional global accumulation, a dynamic accumulation generation operator is introduced based on a data-driven model, which can adaptively select the optimal partial accumulation number according to the intrinsic characteristics of a sequence. Subsequently, dummy variables and a time trend item are integrated into the model structure, significantly enhancing the adaptability of the new model to the sample sequence with different fluctuation trends. Finally, a series of benchmark models are used to predict renewable energy generation in China, wind power generation in the United States, and hydropower generation in India. The empirical results show that the new model performs better than other benchmark models and is an effective tool for the mid- to long-term prediction of renewable energy generation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
应小薇完成签到,获得积分10
刚刚
李瑞康完成签到,获得积分10
刚刚
YF发布了新的文献求助10
刚刚
蛀牙牙完成签到,获得积分10
刚刚
1秒前
乐乐应助细心的恋风采纳,获得10
1秒前
亓大大完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
zlx完成签到,获得积分10
2秒前
2秒前
Han发布了新的文献求助10
3秒前
赘婿应助HUZI采纳,获得10
3秒前
ZC发布了新的文献求助10
3秒前
3秒前
梅一一完成签到,获得积分10
3秒前
失眠紫真发布了新的文献求助10
3秒前
4秒前
5秒前
yuan发布了新的文献求助10
5秒前
17OH完成签到,获得积分10
5秒前
5秒前
Nancy完成签到,获得积分10
6秒前
6秒前
6秒前
Moscrol完成签到,获得积分10
6秒前
6秒前
witt发布了新的文献求助30
7秒前
英姑应助fy采纳,获得10
7秒前
Zsx完成签到,获得积分10
7秒前
机智乐曲发布了新的文献求助30
7秒前
哈哈哈哈哈哈完成签到,获得积分20
7秒前
泥花完成签到,获得积分10
7秒前
7秒前
8秒前
黄毛虎发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577