Forecasting Renewable Energy Generation Based on a Novel Dynamic Accumulation Grey Seasonal Model

可再生能源 发电 水力发电 水准点(测量) 环境经济学 风力发电 豆马勃属 能源安全 计算机科学 储能 工程类 功率(物理) 经济 物理 电气工程 地理 量子力学 大地测量学
作者
Weijie Zhou,H Jiang,Jiaxin Chang
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (16): 12188-12188 被引量:7
标识
DOI:10.3390/su151612188
摘要

With the increasing proportion of electricity in global end-energy consumption, it has become a global consensus that there is a need to develop more environmentally efficient renewable energy generation methods to gradually replace traditional high-pollution fossil energy power generation. Renewable energy generation has become an important method of supplying power across the world. Therefore, the accurate prediction of renewable energy generation plays a vital role in maintaining the security of electricity supply in all countries. Based on this, in our study, a novel dynamic accumulation grey seasonal model is constructed, abbreviated to DPDGSTM(1,1), which is suitable for forecasting mid- to long-term renewable energy generation. Specifically, to overcome the over-accumulation and old information disturbance caused by traditional global accumulation, a dynamic accumulation generation operator is introduced based on a data-driven model, which can adaptively select the optimal partial accumulation number according to the intrinsic characteristics of a sequence. Subsequently, dummy variables and a time trend item are integrated into the model structure, significantly enhancing the adaptability of the new model to the sample sequence with different fluctuation trends. Finally, a series of benchmark models are used to predict renewable energy generation in China, wind power generation in the United States, and hydropower generation in India. The empirical results show that the new model performs better than other benchmark models and is an effective tool for the mid- to long-term prediction of renewable energy generation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助结构采纳,获得30
刚刚
李健应助fancy采纳,获得10
1秒前
3秒前
3秒前
4秒前
激流勇进wb完成签到 ,获得积分10
4秒前
芷卉发布了新的文献求助10
4秒前
xie发布了新的文献求助10
5秒前
ding应助蝴蝶变成毛毛虫采纳,获得10
6秒前
cz发布了新的文献求助10
6秒前
lijshu给lijshu的求助进行了留言
6秒前
6秒前
Aurora完成签到,获得积分10
7秒前
朱朱珠珠应助海晨采纳,获得10
8秒前
8秒前
心灵美的大地完成签到,获得积分10
8秒前
9秒前
黑夜的冰之歌完成签到,获得积分10
10秒前
10秒前
connieGZ完成签到,获得积分10
10秒前
Aurora发布了新的文献求助10
10秒前
Paper发布了新的文献求助10
11秒前
11秒前
xie完成签到,获得积分10
11秒前
快乐的便当完成签到 ,获得积分10
12秒前
12秒前
rainhowk完成签到,获得积分10
12秒前
13秒前
我是老大应助愉快尔烟采纳,获得10
13秒前
ren发布了新的文献求助10
14秒前
14秒前
14秒前
元谷雪发布了新的文献求助10
15秒前
15秒前
大瓜给NianWan的求助进行了留言
15秒前
蒋蒋蒋发布了新的文献求助10
15秒前
connieGZ发布了新的文献求助10
15秒前
15秒前
1816013153发布了新的文献求助30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571571
求助须知:如何正确求助?哪些是违规求助? 4656806
关于积分的说明 14717928
捐赠科研通 4597626
什么是DOI,文献DOI怎么找? 2523291
邀请新用户注册赠送积分活动 1494143
关于科研通互助平台的介绍 1464280