Dynamic graph neural network-based fraud detectors against collaborative fraudsters

计算机科学 骨料(复合) 卷积神经网络 节点(物理) 图形 数据科学 计算机安全 数据挖掘 计算机网络 人工智能 理论计算机科学 材料科学 结构工程 工程类 复合材料
作者
Lingfei Ren,Ruimin Hu,Dengshi Li,Yang Liu,Junhang Wu,Yilong Zang,Wenyi Hu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:278: 110888-110888
标识
DOI:10.1016/j.knosys.2023.110888
摘要

Telecom fraud detection is a challenging task since the fact that fraudulent behaviors are hidden in the vast amount of telecom records. More concerning, the ongoing coronavirus pandemic (COVID-19) accelerated the use of mobile internet, providing more criminal opportunities for fraudsters. However, current telecom fraud detection mostly focuses on individual sequences representation, rarely noticing the collaboration of fraudsters, making it exhibit unsatisfactory performance in the face of gang crimes. To address this problem, we propose to extract collaborative networks from user call logs with an emphasis on unveiling collaborative fraud. We employ eight months of telecom datasets in China with 6,106 users and 5.0 million call logs between 1.25 million telephone recipients. Through our study, we find that the social structure of fraudsters evolute rapidly while the normal users remain stable relatively. In addition, we find that mining collaborative fraud strategies help to detect fraudsters with less distinct fraud characteristics. To this end, we propose a novel model named COllaborative-REsistant Dynamic Graph Neural Network (CORE-DGNN), to enhance the dynamic GNN aggregation process. Specifically, we first use co-recipients to obtain the collaborative network under each time slice. Then, we design a multi-frequency graph neural network to adaptively aggregate the features of node neighbors at different frequencies to address the problem of heterophily in collaborative networks. Finally, a self-attentive temporal convolutional network is designed to aggregate node embedding features across multiple time spans. Comprehensive experiments on two real-world telecom fraud datasets show that our approach outperforms several state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hao2023发布了新的文献求助10
刚刚
刚刚
1秒前
JamesPei应助称心的雅霜采纳,获得10
1秒前
ding应助hzw采纳,获得10
1秒前
2秒前
小吉发布了新的文献求助10
2秒前
orixero应助lt123456采纳,获得10
2秒前
2秒前
深情安青应助你快睡吧采纳,获得10
2秒前
上官老师发布了新的文献求助10
2秒前
Troyelm发布了新的文献求助10
2秒前
3秒前
一坨发布了新的文献求助10
4秒前
若尘发布了新的文献求助10
4秒前
4秒前
表示肯定发布了新的文献求助10
5秒前
代沁发布了新的文献求助10
5秒前
犹豫怀亦完成签到,获得积分10
5秒前
longer发布了新的文献求助10
5秒前
归尘发布了新的文献求助10
5秒前
qx发布了新的文献求助10
6秒前
共享精神应助勤奋日记本采纳,获得10
6秒前
6秒前
6秒前
CodeCraft应助姚晓华采纳,获得10
7秒前
7秒前
烟花应助猪猪hero采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
我是老大应助舍予有服采纳,获得10
8秒前
8秒前
老肖发布了新的文献求助10
8秒前
zxp发布了新的文献求助10
8秒前
顺利白竹完成签到,获得积分10
8秒前
LUCA完成签到 ,获得积分10
9秒前
espresso完成签到,获得积分20
9秒前
10秒前
myth发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994