Dynamic graph neural network-based fraud detectors against collaborative fraudsters

计算机科学 骨料(复合) 卷积神经网络 节点(物理) 图形 数据科学 计算机安全 数据挖掘 计算机网络 人工智能 理论计算机科学 材料科学 结构工程 工程类 复合材料
作者
Lingfei Ren,Ruimin Hu,Dengshi Li,Yang Liu,Junhang Wu,Yilong Zang,Wenyi Hu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:278: 110888-110888
标识
DOI:10.1016/j.knosys.2023.110888
摘要

Telecom fraud detection is a challenging task since the fact that fraudulent behaviors are hidden in the vast amount of telecom records. More concerning, the ongoing coronavirus pandemic (COVID-19) accelerated the use of mobile internet, providing more criminal opportunities for fraudsters. However, current telecom fraud detection mostly focuses on individual sequences representation, rarely noticing the collaboration of fraudsters, making it exhibit unsatisfactory performance in the face of gang crimes. To address this problem, we propose to extract collaborative networks from user call logs with an emphasis on unveiling collaborative fraud. We employ eight months of telecom datasets in China with 6,106 users and 5.0 million call logs between 1.25 million telephone recipients. Through our study, we find that the social structure of fraudsters evolute rapidly while the normal users remain stable relatively. In addition, we find that mining collaborative fraud strategies help to detect fraudsters with less distinct fraud characteristics. To this end, we propose a novel model named COllaborative-REsistant Dynamic Graph Neural Network (CORE-DGNN), to enhance the dynamic GNN aggregation process. Specifically, we first use co-recipients to obtain the collaborative network under each time slice. Then, we design a multi-frequency graph neural network to adaptively aggregate the features of node neighbors at different frequencies to address the problem of heterophily in collaborative networks. Finally, a self-attentive temporal convolutional network is designed to aggregate node embedding features across multiple time spans. Comprehensive experiments on two real-world telecom fraud datasets show that our approach outperforms several state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ava应助想多睡会儿采纳,获得10
1秒前
隐形曼青应助葡萄成熟时采纳,获得10
3秒前
润润轩轩完成签到,获得积分10
3秒前
小二郎应助Doctor12th采纳,获得10
5秒前
调皮的凝旋完成签到,获得积分10
6秒前
6秒前
7秒前
民大胡发布了新的文献求助30
7秒前
归于水云身完成签到 ,获得积分10
8秒前
enoch完成签到 ,获得积分10
8秒前
yyt发布了新的文献求助10
8秒前
学术垃圾制造者完成签到,获得积分10
10秒前
科研通AI2S应助wu采纳,获得10
10秒前
宇哈哈完成签到,获得积分10
10秒前
11秒前
宇哈哈发布了新的文献求助10
12秒前
辛勤的寒梦完成签到 ,获得积分10
12秒前
12秒前
是述不是沭完成签到,获得积分10
13秒前
14秒前
14秒前
葡萄成熟时完成签到,获得积分10
14秒前
笑笑完成签到,获得积分10
14秒前
完美的天空应助luca采纳,获得30
14秒前
MoriZhang完成签到,获得积分10
15秒前
搜集达人应助嘿嘿采纳,获得10
15秒前
完美世界应助科学宇宙采纳,获得10
15秒前
小破网完成签到 ,获得积分0
15秒前
16秒前
zz完成签到,获得积分10
16秒前
甜甜的曼荷完成签到,获得积分10
17秒前
Doctor12th完成签到,获得积分20
17秒前
17秒前
M88888发布了新的文献求助10
17秒前
漫梦qiqi发布了新的文献求助10
17秒前
18秒前
善学以致用应助Mrivy采纳,获得10
18秒前
18秒前
shaw完成签到,获得积分10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239206
求助须知:如何正确求助?哪些是违规求助? 2884515
关于积分的说明 8234062
捐赠科研通 2552485
什么是DOI,文献DOI怎么找? 1380889
科研通“疑难数据库(出版商)”最低求助积分说明 649086
邀请新用户注册赠送积分活动 624817