Dynamic graph neural network-based fraud detectors against collaborative fraudsters

计算机科学 骨料(复合) 卷积神经网络 节点(物理) 图形 数据科学 计算机安全 数据挖掘 计算机网络 人工智能 理论计算机科学 结构工程 工程类 复合材料 材料科学
作者
Lingfei Ren,Ruimin Hu,Dengshi Li,Yang Liu,Junhang Wu,Yilong Zang,Wenyi Hu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:278: 110888-110888
标识
DOI:10.1016/j.knosys.2023.110888
摘要

Telecom fraud detection is a challenging task since the fact that fraudulent behaviors are hidden in the vast amount of telecom records. More concerning, the ongoing coronavirus pandemic (COVID-19) accelerated the use of mobile internet, providing more criminal opportunities for fraudsters. However, current telecom fraud detection mostly focuses on individual sequences representation, rarely noticing the collaboration of fraudsters, making it exhibit unsatisfactory performance in the face of gang crimes. To address this problem, we propose to extract collaborative networks from user call logs with an emphasis on unveiling collaborative fraud. We employ eight months of telecom datasets in China with 6,106 users and 5.0 million call logs between 1.25 million telephone recipients. Through our study, we find that the social structure of fraudsters evolute rapidly while the normal users remain stable relatively. In addition, we find that mining collaborative fraud strategies help to detect fraudsters with less distinct fraud characteristics. To this end, we propose a novel model named COllaborative-REsistant Dynamic Graph Neural Network (CORE-DGNN), to enhance the dynamic GNN aggregation process. Specifically, we first use co-recipients to obtain the collaborative network under each time slice. Then, we design a multi-frequency graph neural network to adaptively aggregate the features of node neighbors at different frequencies to address the problem of heterophily in collaborative networks. Finally, a self-attentive temporal convolutional network is designed to aggregate node embedding features across multiple time spans. Comprehensive experiments on two real-world telecom fraud datasets show that our approach outperforms several state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助1111采纳,获得10
1秒前
wanwan应助大热热采纳,获得10
1秒前
nako7575发布了新的文献求助10
1秒前
NARUTO完成签到 ,获得积分10
2秒前
刘佳欣发布了新的文献求助10
2秒前
何瑷君完成签到,获得积分10
2秒前
桐桐应助小只采纳,获得10
3秒前
ding应助达达尼尔采纳,获得10
3秒前
3秒前
momomo应助灰底爆米花采纳,获得10
3秒前
坦率的匪应助魔幻稀采纳,获得10
3秒前
积极寻雪发布了新的文献求助10
4秒前
5秒前
5秒前
uss完成签到,获得积分10
6秒前
SYX完成签到 ,获得积分10
6秒前
mpenny77发布了新的文献求助10
7秒前
7秒前
认真的青柠完成签到,获得积分10
9秒前
9秒前
yuan发布了新的文献求助10
9秒前
贰鸟应助drtianyunhong采纳,获得10
10秒前
10秒前
10秒前
林三一完成签到,获得积分10
12秒前
冷静尔芙发布了新的文献求助10
12秒前
caicai发布了新的文献求助10
13秒前
13秒前
666完成签到,获得积分10
14秒前
15秒前
15秒前
科目三应助林三一采纳,获得10
16秒前
17秒前
1111发布了新的文献求助10
17秒前
17秒前
天天快乐应助yuan采纳,获得10
18秒前
万能图书馆应助mir为少采纳,获得10
18秒前
发财的Mei完成签到 ,获得积分10
18秒前
mpenny77完成签到,获得积分10
19秒前
momomo应助dangniuma采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425