A LSTM Assisted Prediction Strategy for Evolutionary Dynamic Multiobjective Optimization

计算机科学 进化算法 人口 数学优化 帕累托最优 帕累托原理 点(几何) 歧管(流体力学) 人工智能 多目标优化 过程(计算) 高斯分布 机器学习 数学 工程类 几何学 人口学 社会学 量子力学 物理 操作系统 机械工程
作者
Guoyu Chen,Yinan Guo
出处
期刊:Communications in computer and information science 卷期号:: 376-389
标识
DOI:10.1007/978-981-99-5844-3_27
摘要

Dynamic multiobjective optimization problems (DMOPs) are widely spread in real-world applications. Once the environment changes, the time-varying Pareto-optimal solutions (PS) are required to be timely tracked. The existing studies have pointed out that the prediction based mechanism can initialize high-quality population, accelerating search toward the true PS under the new environment. However, they generally ignore the correlation between decision variables during the prediction process, insufficiently predict the future location under the complex problems. To solve this issue, this paper proposes a long short-term memory (LSTM) assisted prediction strategy for solving DMOPs. When an environmental change is detected, the population is divided into center point and manifold. As for center point, historical ones are utilized to train LSTM network and predict the future one. Subsequently, the manifold is estimated by Gaussian model in terms of two past ones. In this way, an initial population is generated at the new time by combining the predicted center point and manifold. The intensive experimental results have demonstrated that the proposed algorithm has good performance and computational efficiency in solving DMOPs, outperforming the several state-of-the-art dynamic multiobjective evolutionary algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助缓慢易云采纳,获得10
刚刚
刚刚
大力向南发布了新的文献求助10
刚刚
孙福禄应助戚薇采纳,获得10
1秒前
从容芮应助孤独寻云采纳,获得50
1秒前
2秒前
包子完成签到,获得积分10
2秒前
112255完成签到,获得积分20
2秒前
叶梓轩完成签到 ,获得积分10
2秒前
2秒前
冷酷严青发布了新的文献求助10
2秒前
pojian完成签到,获得积分10
2秒前
mayi完成签到,获得积分10
3秒前
JoshuaChen发布了新的文献求助10
3秒前
4秒前
我是老大应助畅快的书兰采纳,获得10
5秒前
5秒前
N型半导体发布了新的文献求助10
6秒前
烟花应助039Hc采纳,获得10
6秒前
6秒前
ps2666完成签到 ,获得积分10
6秒前
灼灼朗朗完成签到,获得积分10
7秒前
在水一方应助小陈采纳,获得10
7秒前
CipherSage应助WENDY采纳,获得10
7秒前
8秒前
默默完成签到 ,获得积分10
8秒前
xmyang完成签到,获得积分10
8秒前
goblue完成签到,获得积分10
8秒前
8秒前
矮小的笑槐完成签到,获得积分10
8秒前
竹音完成签到,获得积分10
8秒前
aodilee完成签到,获得积分10
9秒前
zho发布了新的文献求助10
9秒前
9秒前
9秒前
打打应助N型半导体采纳,获得10
9秒前
科研小白发布了新的文献求助10
9秒前
czz完成签到,获得积分10
10秒前
望开心顺利毕业完成签到,获得积分10
10秒前
ruogu7完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582