Machine learning analysis of lung squamous cell carcinoma gene expression datasets reveals novel prognostic signatures

Lasso(编程语言) 基因 比例危险模型 分类器(UML) 计算生物学 基因表达谱 计算机科学 肺癌 基因表达 回归 机器学习 人工智能 生物信息学 生物 医学 肿瘤科 内科学 遗传学 数学 统计 万维网
作者
Hemant Kumar Joon,Anamika Thalor,Dinesh Gupta
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107430-107430 被引量:7
标识
DOI:10.1016/j.compbiomed.2023.107430
摘要

Lung squamous cell carcinoma (LUSC) patients are often diagnosed at an advanced stage and have poor prognoses. Thus, identifying novel biomarkers for the LUSC is of utmost importance.Multiple datasets from the NCBI-GEO repository were obtained and merged to construct the complete dataset. We also constructed a subset from this complete dataset with only known cancer driver genes. Further, machine learning classifiers were employed to obtain the best features from both datasets. Simultaneously, we perform differential gene expression analysis. Furthermore, survival and enrichment analyses were performed.The kNN classifier performed comparatively better on the complete and driver datasets' top 40 and 50 gene features, respectively. Out of these 90 gene features, 35 were found to be differentially regulated. Lasso-penalized Cox regression further reduced the number of genes to eight. The median risk score of these eight genes significantly stratified the patients, and low-risk patients have significantly better overall survival. We validated the robust performance of these eight genes on the TCGA dataset. Pathway enrichment analysis identified that these genes are associated with cell cycle, cell proliferation, and migration.This study demonstrates that an integrated approach involving machine learning and system biology may effectively identify novel biomarkers for LUSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bobochi发布了新的文献求助30
刚刚
1秒前
2秒前
冀北山人完成签到,获得积分10
2秒前
小飞完成签到,获得积分20
3秒前
3秒前
曼冬发布了新的文献求助10
4秒前
7秒前
lv发布了新的文献求助10
7秒前
玉米脆片发布了新的文献求助10
7秒前
7秒前
赘婿应助尚未千万里采纳,获得10
8秒前
魔力巴啦啦完成签到 ,获得积分10
8秒前
8秒前
芽芽豆完成签到 ,获得积分10
8秒前
lianqing完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
Sean完成签到,获得积分10
10秒前
卛e完成签到,获得积分10
10秒前
10秒前
健康好运和完成签到 ,获得积分20
12秒前
12秒前
666发布了新的文献求助10
13秒前
inferyes完成签到,获得积分10
13秒前
嘉的科研发布了新的文献求助10
13秒前
大模型应助杨欢欢采纳,获得10
13秒前
hetao286发布了新的文献求助10
14秒前
Janice完成签到,获得积分10
15秒前
溪风完成签到,获得积分10
15秒前
朴素的不愁完成签到 ,获得积分10
16秒前
netrandwalk完成签到,获得积分10
16秒前
aryecatcher发布了新的文献求助10
18秒前
共享精神应助peach采纳,获得10
18秒前
大黄鸭的小黄人完成签到,获得积分10
18秒前
pengzzZZ发布了新的文献求助10
19秒前
阿胡发布了新的文献求助10
19秒前
Orange应助科研通管家采纳,获得10
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969940
求助须知:如何正确求助?哪些是违规求助? 3514642
关于积分的说明 11175298
捐赠科研通 3249947
什么是DOI,文献DOI怎么找? 1795178
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891