Machine learning analysis of lung squamous cell carcinoma gene expression datasets reveals novel prognostic signatures

Lasso(编程语言) 基因 比例危险模型 分类器(UML) 计算生物学 基因表达谱 计算机科学 肺癌 基因表达 回归 机器学习 人工智能 生物信息学 生物 医学 肿瘤科 内科学 遗传学 数学 万维网 统计
作者
Hemant Kumar Joon,Anamika Thalor,Dinesh Gupta
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107430-107430 被引量:7
标识
DOI:10.1016/j.compbiomed.2023.107430
摘要

Lung squamous cell carcinoma (LUSC) patients are often diagnosed at an advanced stage and have poor prognoses. Thus, identifying novel biomarkers for the LUSC is of utmost importance.Multiple datasets from the NCBI-GEO repository were obtained and merged to construct the complete dataset. We also constructed a subset from this complete dataset with only known cancer driver genes. Further, machine learning classifiers were employed to obtain the best features from both datasets. Simultaneously, we perform differential gene expression analysis. Furthermore, survival and enrichment analyses were performed.The kNN classifier performed comparatively better on the complete and driver datasets' top 40 and 50 gene features, respectively. Out of these 90 gene features, 35 were found to be differentially regulated. Lasso-penalized Cox regression further reduced the number of genes to eight. The median risk score of these eight genes significantly stratified the patients, and low-risk patients have significantly better overall survival. We validated the robust performance of these eight genes on the TCGA dataset. Pathway enrichment analysis identified that these genes are associated with cell cycle, cell proliferation, and migration.This study demonstrates that an integrated approach involving machine learning and system biology may effectively identify novel biomarkers for LUSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
DriftHhh完成签到,获得积分20
2秒前
存封完成签到,获得积分10
3秒前
3秒前
一二三完成签到,获得积分10
4秒前
阿May完成签到 ,获得积分10
4秒前
coconut发布了新的文献求助10
4秒前
5秒前
xx发布了新的文献求助10
5秒前
花花发布了新的文献求助10
5秒前
辛勤的煎蛋完成签到,获得积分10
5秒前
土豆发布了新的文献求助10
6秒前
6秒前
Henry应助ws_WS_采纳,获得200
6秒前
绿眼虫发布了新的文献求助20
6秒前
李健应助陆啊陆采纳,获得10
6秒前
曲奇完成签到,获得积分10
7秒前
7秒前
mj发布了新的文献求助10
8秒前
8秒前
小元完成签到,获得积分10
9秒前
丘比特应助文文采纳,获得10
10秒前
11秒前
Dobronx03发布了新的文献求助10
11秒前
青争鱼发布了新的文献求助30
11秒前
12秒前
yiyi完成签到,获得积分10
12秒前
白白kyt完成签到,获得积分10
13秒前
13秒前
在水一方应助无私的飞鸟采纳,获得10
13秒前
14秒前
dd发布了新的文献求助10
14秒前
15秒前
15秒前
科研通AI2S应助白玉元宵采纳,获得10
16秒前
冷静灵竹发布了新的文献求助10
16秒前
白白kyt发布了新的文献求助30
16秒前
高文雅发布了新的文献求助10
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148683
求助须知:如何正确求助?哪些是违规求助? 2799722
关于积分的说明 7836622
捐赠科研通 2457168
什么是DOI,文献DOI怎么找? 1307779
科研通“疑难数据库(出版商)”最低求助积分说明 628265
版权声明 601663