Machine learning analysis of lung squamous cell carcinoma gene expression datasets reveals novel prognostic signatures

Lasso(编程语言) 基因 比例危险模型 分类器(UML) 计算生物学 基因表达谱 计算机科学 肺癌 基因表达 回归 机器学习 人工智能 生物信息学 生物 医学 肿瘤科 内科学 遗传学 数学 万维网 统计
作者
Hemant Kumar Joon,Anamika Thalor,Dinesh Gupta
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107430-107430 被引量:7
标识
DOI:10.1016/j.compbiomed.2023.107430
摘要

Lung squamous cell carcinoma (LUSC) patients are often diagnosed at an advanced stage and have poor prognoses. Thus, identifying novel biomarkers for the LUSC is of utmost importance.Multiple datasets from the NCBI-GEO repository were obtained and merged to construct the complete dataset. We also constructed a subset from this complete dataset with only known cancer driver genes. Further, machine learning classifiers were employed to obtain the best features from both datasets. Simultaneously, we perform differential gene expression analysis. Furthermore, survival and enrichment analyses were performed.The kNN classifier performed comparatively better on the complete and driver datasets' top 40 and 50 gene features, respectively. Out of these 90 gene features, 35 were found to be differentially regulated. Lasso-penalized Cox regression further reduced the number of genes to eight. The median risk score of these eight genes significantly stratified the patients, and low-risk patients have significantly better overall survival. We validated the robust performance of these eight genes on the TCGA dataset. Pathway enrichment analysis identified that these genes are associated with cell cycle, cell proliferation, and migration.This study demonstrates that an integrated approach involving machine learning and system biology may effectively identify novel biomarkers for LUSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sutharsons应助科研通管家采纳,获得200
1秒前
打打应助科研通管家采纳,获得10
1秒前
axin应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
李健应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
2秒前
lu应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
研友_MLJldZ发布了新的文献求助10
2秒前
wys完成签到 ,获得积分10
3秒前
4秒前
michaelvin完成签到,获得积分10
4秒前
学术大白完成签到 ,获得积分10
7秒前
7秒前
SYT完成签到,获得积分10
8秒前
9秒前
11秒前
11秒前
11秒前
12秒前
12秒前
魏伯安发布了新的文献求助10
12秒前
12秒前
zhouleiwang完成签到,获得积分10
13秒前
李爱国应助aiming采纳,获得10
14秒前
无奈傲菡完成签到,获得积分10
15秒前
TT发布了新的文献求助10
15秒前
啦啦啦发布了新的文献求助10
16秒前
sun发布了新的文献求助10
17秒前
荣荣完成签到,获得积分10
17秒前
18秒前
小安完成签到,获得积分10
19秒前
Spencer完成签到 ,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849