Dual-branch counting method for dense crowd based on self-attention mechanism

计算机科学 人工智能 变压器 特征提取 模式识别(心理学) 融合机制 对偶(语法数字) 融合 数据挖掘 语言学 哲学 物理 文学类 量子力学 电压 脂质双层融合 艺术
作者
Yongjie Wang,Feng Wang,Dongyang Huang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:236: 121272-121272 被引量:3
标识
DOI:10.1016/j.eswa.2023.121272
摘要

A dense crowd counting method based on self-attention mechanism with dual-branch fusion network is proposed in this paper. Our method aims to address the problems of large variations in head scales and complex backgrounds in dense crowd images. This method combines the CNN and Transformer network frameworks and consists of shallow feature extraction network, dual-branch fusion network, and deep feature extraction network. The VGG16 network is employed by the shallow feature extraction network to extract low-level features. A multi-scale CNN branch and a Transformer branch built on an improved self-attention module make up the dual-branch fusion network, which collects local and global information on crowd areas, respectively. The Transformer network, which is based on a mixed attention module, is employed by the deep feature extraction network to further separate complicated backgrounds and concentrate on crowd areas. Both counting-level weakly supervised and location-level fully supervised methods are employed in the experiments. On four widely used datasets, the results demonstrate that the proposed method outperforms the most recent research. Our method has a higher counting accuracy with low parameter volumes and a counting accuracy of 89.1% under full supervision when compared to existing weakly supervised methods. The results of the experiments demonstrate that the method has excellent crowd counting performance and can accurately count in high-density and high-occlusion scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
漂亮土豆完成签到,获得积分10
2秒前
疯狂的向日葵完成签到,获得积分10
3秒前
baby的跑男完成签到,获得积分10
4秒前
甩看文献完成签到,获得积分10
5秒前
卡卡完成签到,获得积分10
6秒前
royan2发布了新的文献求助10
6秒前
嘟嘟豆806完成签到 ,获得积分10
7秒前
甩看文献发布了新的文献求助10
7秒前
Cold-Drink-Shop完成签到,获得积分10
9秒前
Sci完成签到,获得积分10
10秒前
卡卡发布了新的文献求助20
10秒前
12秒前
Orange应助科研通管家采纳,获得10
13秒前
Barton应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
Jun应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
oceanao应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得30
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
14秒前
Akim应助科研通管家采纳,获得10
14秒前
14秒前
tramp应助科研通管家采纳,获得50
14秒前
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
优雅的平安完成签到 ,获得积分10
15秒前
懵懂的芫发布了新的文献求助10
16秒前
16秒前
18秒前
祖问筠完成签到,获得积分10
19秒前
上官若男应助purple1212采纳,获得30
19秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165129
求助须知:如何正确求助?哪些是违规求助? 2816163
关于积分的说明 7911618
捐赠科研通 2475835
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632124
版权声明 602388