亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Zero-Shot Camouflaged Object Detection

计算机科学 人工智能 目标检测 Boosting(机器学习) 水准点(测量) 稳健性(进化) 光学(聚焦) 视觉对象识别的认知神经科学 计算机视觉 图形 模式识别(心理学) 对象(语法) 机器学习 理论计算机科学 物理 光学 化学 基因 地理 生物化学 大地测量学
作者
Haoran Li,Chun-Mei Feng,Yong Xu,Tao Zhou,Lina Yao,Xiaojun Chang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 5126-5137 被引量:18
标识
DOI:10.1109/tip.2023.3308295
摘要

The goal of Camouflaged object detection (COD) is to detect objects that are visually embedded in their surroundings. Existing COD methods only focus on detecting camouflaged objects from seen classes, while they suffer from performance degradation to detect unseen classes. However, in a real-world scenario, collecting sufficient data for seen classes is extremely difficult and labeling them requires high professional skills, thereby making these COD methods not applicable. In this paper, we propose a new zero-shot COD framework (termed as ZSCOD), which can effectively detect the never unseen classes. Specifically, our framework includes a Dynamic Graph Searching Network (DGSNet) and a Camouflaged Visual Reasoning Generator (CVRG). In details, DGSNet is proposed to adaptively capture more edge details for boosting the COD performance. CVRG is utilized to produce pseudo-features that are closer to the real features of the seen camouflaged objects, which can transfer knowledge from seen classes to unseen classes to help detect unseen objects. Besides, our graph reasoning is built on a dynamic searching strategy, which can pay more attention to the boundaries of objects for reducing the influences of background. More importantly, we construct the first zero-shot COD benchmark based on the COD10K dataset. Experimental results on public datasets show that our ZSCOD not only detects the camouflaged object of unseen classes but also achieves state-of-the-art performance in detecting seen classes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
4秒前
xiaozhang发布了新的文献求助10
6秒前
8秒前
bkagyin应助翼_采纳,获得10
12秒前
cc完成签到,获得积分10
13秒前
NI完成签到 ,获得积分10
15秒前
科研通AI6应助Li采纳,获得30
16秒前
17秒前
19秒前
20秒前
今后应助xiaozhang采纳,获得10
20秒前
沉静的安青完成签到 ,获得积分10
22秒前
翼_发布了新的文献求助10
25秒前
卷毛维安完成签到,获得积分10
32秒前
lyulyuch221发布了新的文献求助30
33秒前
科研通AI6应助韶孤容采纳,获得10
36秒前
木有完成签到 ,获得积分10
43秒前
小二郎应助务实的犀牛采纳,获得10
48秒前
lin完成签到,获得积分10
49秒前
风趣的映天完成签到,获得积分20
51秒前
57秒前
58秒前
1分钟前
xingyi完成签到,获得积分10
1分钟前
风一样的风干肠完成签到 ,获得积分10
1分钟前
ChenLan发布了新的文献求助10
1分钟前
Mo完成签到,获得积分10
1分钟前
科研通AI6应助ChenLan采纳,获得10
1分钟前
嗨Honey完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
今后应助翔96采纳,获得10
1分钟前
1分钟前
arrebol发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401243
求助须知:如何正确求助?哪些是违规求助? 4520182
关于积分的说明 14079110
捐赠科研通 4433320
什么是DOI,文献DOI怎么找? 2434080
邀请新用户注册赠送积分活动 1426263
关于科研通互助平台的介绍 1404864