Reducing the vicissitudes of heterologous prochiral substrate catalysis by alcohol dehydrogenases through machine learning algorithms

合成子 机器学习 人工智能 醇脱氢酶 偏最小二乘回归 支持向量机 计算机科学 基质(水族馆) 主成分分析 化学 算法 组合化学 立体化学 生物 生物化学 生态学
作者
Arindam Ghatak,Anirudh P. Shanbhag,Santanu Datta
出处
期刊:Biochemical and Biophysical Research Communications [Elsevier]
卷期号:691: 149298-149298
标识
DOI:10.1016/j.bbrc.2023.149298
摘要

Alcohol dehydrogenases (ADHs) are popular catalysts for synthesizing chiral synthons a vital step for active pharmaceutical intermediate (API) production. They are grouped into three superfamilies namely, medium-chain (MDRs), short-chain dehydrogenase/reductases (SDRs), and iron-containing alcohol dehydrogenases. The former two are used extensively for producing various chiral synthons. Many studies screen multiple enzymes or engineer a specific enzyme for catalyzing a substrate of interest. These processes are resource-intensive and intricate. The current study attempts to decipher the ability to match different ADHs with their ideal substrates using machine learning algorithms. We explore the catalysis of 284 antibacterial ketone intermediates, against MDRs and SDRs to demonstrate a unique pattern of activity. To facilitate machine learning we curated a dataset comprising 33 features, encompassing 4 descriptors for each compound. Subsequently, an ensemble of machine learning techniques viz. Partial Least Squares (PLS) regression, k-Nearest Neighbors (kNN) regression, and Support Vector Machine (SVM) regression, was harnessed. Moreover, the assimilation of Principal Component Analysis (PCA) augmented precision and accuracy, thereby refining and demarcating diverse compound classes. As such, this classification is useful for discerning substrates amenable to diverse alcohol dehydrogenases, thereby mitigating the reliance on high-throughput screening or engineering in identifying the optimal enzyme for specific substrate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
milly发布了新的文献求助10
1秒前
2秒前
orixero应助积极的花卷采纳,获得10
3秒前
5秒前
孤独梦安完成签到 ,获得积分10
5秒前
脑洞疼应助竹蜻蜓采纳,获得10
7秒前
10秒前
coco完成签到 ,获得积分10
10秒前
aha发布了新的文献求助10
10秒前
zt完成签到,获得积分20
10秒前
酷波er应助12采纳,获得50
11秒前
沉静亦寒完成签到 ,获得积分10
14秒前
天天快乐应助nusaber采纳,获得10
15秒前
沉静凡松发布了新的文献求助10
15秒前
烟花应助云海采纳,获得10
16秒前
18秒前
18秒前
18秒前
doudou完成签到 ,获得积分10
19秒前
西瓜撞地球完成签到 ,获得积分10
19秒前
afar完成签到,获得积分10
19秒前
aha完成签到,获得积分10
21秒前
22秒前
afar发布了新的文献求助10
23秒前
23秒前
冷傲含海发布了新的文献求助10
24秒前
zhaoyuli完成签到,获得积分10
24秒前
云海发布了新的文献求助10
28秒前
警察同志听我解释完成签到,获得积分10
28秒前
29秒前
山谷完成签到,获得积分10
29秒前
flyingpig完成签到,获得积分10
30秒前
syh5527029完成签到 ,获得积分10
31秒前
31秒前
彭于晏应助盛夏采纳,获得10
32秒前
32秒前
冷傲松鼠完成签到 ,获得积分10
33秒前
33秒前
执着的冬瓜完成签到 ,获得积分10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560834
求助须知:如何正确求助?哪些是违规求助? 4646178
关于积分的说明 14677685
捐赠科研通 4587278
什么是DOI,文献DOI怎么找? 2516949
邀请新用户注册赠送积分活动 1490355
关于科研通互助平台的介绍 1461160