Reducing the vicissitudes of heterologous prochiral substrate catalysis by alcohol dehydrogenases through machine learning algorithms

合成子 机器学习 人工智能 醇脱氢酶 偏最小二乘回归 支持向量机 计算机科学 基质(水族馆) 主成分分析 化学 算法 组合化学 立体化学 生物 生物化学 生态学
作者
Arindam Ghatak,Anirudh P. Shanbhag,Santanu Datta
出处
期刊:Biochemical and Biophysical Research Communications [Elsevier]
卷期号:691: 149298-149298
标识
DOI:10.1016/j.bbrc.2023.149298
摘要

Alcohol dehydrogenases (ADHs) are popular catalysts for synthesizing chiral synthons a vital step for active pharmaceutical intermediate (API) production. They are grouped into three superfamilies namely, medium-chain (MDRs), short-chain dehydrogenase/reductases (SDRs), and iron-containing alcohol dehydrogenases. The former two are used extensively for producing various chiral synthons. Many studies screen multiple enzymes or engineer a specific enzyme for catalyzing a substrate of interest. These processes are resource-intensive and intricate. The current study attempts to decipher the ability to match different ADHs with their ideal substrates using machine learning algorithms. We explore the catalysis of 284 antibacterial ketone intermediates, against MDRs and SDRs to demonstrate a unique pattern of activity. To facilitate machine learning we curated a dataset comprising 33 features, encompassing 4 descriptors for each compound. Subsequently, an ensemble of machine learning techniques viz. Partial Least Squares (PLS) regression, k-Nearest Neighbors (kNN) regression, and Support Vector Machine (SVM) regression, was harnessed. Moreover, the assimilation of Principal Component Analysis (PCA) augmented precision and accuracy, thereby refining and demarcating diverse compound classes. As such, this classification is useful for discerning substrates amenable to diverse alcohol dehydrogenases, thereby mitigating the reliance on high-throughput screening or engineering in identifying the optimal enzyme for specific substrate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶之夭夭完成签到 ,获得积分10
1秒前
zzz完成签到,获得积分10
1秒前
Zhou完成签到,获得积分10
1秒前
1秒前
1秒前
kendrick677发布了新的文献求助10
1秒前
ccc完成签到,获得积分10
1秒前
2秒前
詹严青完成签到,获得积分10
2秒前
赘婿应助qcrcherry采纳,获得10
2秒前
yusong发布了新的文献求助10
2秒前
2秒前
bjbmtxy应助niko采纳,获得10
2秒前
小巧吐司完成签到,获得积分10
2秒前
SciGPT应助niko采纳,获得10
2秒前
赘婿应助niko采纳,获得10
2秒前
乐乐应助niko采纳,获得10
3秒前
所所应助niko采纳,获得10
3秒前
所所应助niko采纳,获得10
3秒前
传奇3应助niko采纳,获得10
3秒前
在水一方应助niko采纳,获得10
3秒前
大个应助niko采纳,获得10
3秒前
小蘑菇应助niko采纳,获得10
3秒前
3秒前
情怀应助曾经冰露采纳,获得10
4秒前
拟南芥完成签到,获得积分10
4秒前
CodeCraft应助zo采纳,获得10
5秒前
Jenna发布了新的文献求助10
5秒前
不得了完成签到,获得积分10
5秒前
5秒前
qqqq发布了新的文献求助10
6秒前
含糊的小土豆完成签到,获得积分10
6秒前
6秒前
7秒前
科研通AI6应助Fryanto采纳,获得10
7秒前
8秒前
8秒前
8秒前
青秋鱼罐头完成签到,获得积分10
8秒前
慕青应助niko采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531417
求助须知:如何正确求助?哪些是违规求助? 4620221
关于积分的说明 14572354
捐赠科研通 4559789
什么是DOI,文献DOI怎么找? 2498599
邀请新用户注册赠送积分活动 1478568
关于科研通互助平台的介绍 1449979