Reducing the vicissitudes of heterologous prochiral substrate catalysis by alcohol dehydrogenases through machine learning algorithms

合成子 机器学习 人工智能 醇脱氢酶 偏最小二乘回归 支持向量机 计算机科学 基质(水族馆) 主成分分析 化学 算法 组合化学 立体化学 生物 生物化学 生态学
作者
Arindam Ghatak,Anirudh P. Shanbhag,Santanu Datta
出处
期刊:Biochemical and Biophysical Research Communications [Elsevier]
卷期号:691: 149298-149298
标识
DOI:10.1016/j.bbrc.2023.149298
摘要

Alcohol dehydrogenases (ADHs) are popular catalysts for synthesizing chiral synthons a vital step for active pharmaceutical intermediate (API) production. They are grouped into three superfamilies namely, medium-chain (MDRs), short-chain dehydrogenase/reductases (SDRs), and iron-containing alcohol dehydrogenases. The former two are used extensively for producing various chiral synthons. Many studies screen multiple enzymes or engineer a specific enzyme for catalyzing a substrate of interest. These processes are resource-intensive and intricate. The current study attempts to decipher the ability to match different ADHs with their ideal substrates using machine learning algorithms. We explore the catalysis of 284 antibacterial ketone intermediates, against MDRs and SDRs to demonstrate a unique pattern of activity. To facilitate machine learning we curated a dataset comprising 33 features, encompassing 4 descriptors for each compound. Subsequently, an ensemble of machine learning techniques viz. Partial Least Squares (PLS) regression, k-Nearest Neighbors (kNN) regression, and Support Vector Machine (SVM) regression, was harnessed. Moreover, the assimilation of Principal Component Analysis (PCA) augmented precision and accuracy, thereby refining and demarcating diverse compound classes. As such, this classification is useful for discerning substrates amenable to diverse alcohol dehydrogenases, thereby mitigating the reliance on high-throughput screening or engineering in identifying the optimal enzyme for specific substrate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sylvia41完成签到 ,获得积分10
刚刚
1秒前
1秒前
小薛完成签到,获得积分20
1秒前
Orange应助积极的玉米采纳,获得10
2秒前
韦远侵发布了新的文献求助10
2秒前
大方颦完成签到 ,获得积分10
2秒前
HH发布了新的文献求助10
3秒前
3秒前
沚沐发布了新的文献求助10
3秒前
思源应助xanderxue采纳,获得10
4秒前
Ww完成签到,获得积分20
4秒前
zstyry9998完成签到,获得积分10
4秒前
mao发布了新的文献求助10
4秒前
5秒前
秋归晚完成签到,获得积分10
5秒前
情怀应助沚沐采纳,获得10
6秒前
Vitalis完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
简单啊完成签到,获得积分20
8秒前
Hello应助葛一豪采纳,获得10
8秒前
酷波er应助Dotuu采纳,获得30
9秒前
科研通AI6应助大胆的猫咪采纳,获得10
9秒前
9秒前
今后应助山谷采纳,获得10
9秒前
乐乐应助亦澄采纳,获得10
9秒前
平安只喜乐完成签到,获得积分10
10秒前
CF发布了新的文献求助10
10秒前
FlaKe完成签到,获得积分20
10秒前
10秒前
典雅碧空发布了新的文献求助10
11秒前
11秒前
共享精神应助兴奋的问寒采纳,获得10
11秒前
香蕉觅云应助典雅的友安采纳,获得10
11秒前
诗语发布了新的文献求助10
11秒前
疯狂的慕灵完成签到 ,获得积分10
12秒前
wy发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430157
求助须知:如何正确求助?哪些是违规求助? 4543397
关于积分的说明 14186899
捐赠科研通 4461523
什么是DOI,文献DOI怎么找? 2446207
邀请新用户注册赠送积分活动 1437454
关于科研通互助平台的介绍 1414381