Reducing the vicissitudes of heterologous prochiral substrate catalysis by alcohol dehydrogenases through machine learning algorithms

合成子 机器学习 人工智能 醇脱氢酶 偏最小二乘回归 支持向量机 计算机科学 基质(水族馆) 主成分分析 化学 算法 组合化学 立体化学 生物 生物化学 生态学
作者
Arindam Ghatak,Anirudh P. Shanbhag,Santanu Datta
出处
期刊:Biochemical and Biophysical Research Communications [Elsevier]
卷期号:691: 149298-149298
标识
DOI:10.1016/j.bbrc.2023.149298
摘要

Alcohol dehydrogenases (ADHs) are popular catalysts for synthesizing chiral synthons a vital step for active pharmaceutical intermediate (API) production. They are grouped into three superfamilies namely, medium-chain (MDRs), short-chain dehydrogenase/reductases (SDRs), and iron-containing alcohol dehydrogenases. The former two are used extensively for producing various chiral synthons. Many studies screen multiple enzymes or engineer a specific enzyme for catalyzing a substrate of interest. These processes are resource-intensive and intricate. The current study attempts to decipher the ability to match different ADHs with their ideal substrates using machine learning algorithms. We explore the catalysis of 284 antibacterial ketone intermediates, against MDRs and SDRs to demonstrate a unique pattern of activity. To facilitate machine learning we curated a dataset comprising 33 features, encompassing 4 descriptors for each compound. Subsequently, an ensemble of machine learning techniques viz. Partial Least Squares (PLS) regression, k-Nearest Neighbors (kNN) regression, and Support Vector Machine (SVM) regression, was harnessed. Moreover, the assimilation of Principal Component Analysis (PCA) augmented precision and accuracy, thereby refining and demarcating diverse compound classes. As such, this classification is useful for discerning substrates amenable to diverse alcohol dehydrogenases, thereby mitigating the reliance on high-throughput screening or engineering in identifying the optimal enzyme for specific substrate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
微米完成签到,获得积分10
3秒前
4秒前
4秒前
Orange应助zhuxu采纳,获得10
6秒前
小遇完成签到 ,获得积分10
6秒前
悠悠发布了新的文献求助10
7秒前
MMMV完成签到,获得积分10
8秒前
11秒前
小蘑菇应助高挑的迎夏采纳,获得10
11秒前
tannie完成签到 ,获得积分0
12秒前
隐形珊完成签到,获得积分10
14秒前
希望天下0贩的0应助niniyiya采纳,获得10
14秒前
15秒前
15秒前
16秒前
Orange应助圈圈采纳,获得10
18秒前
aa完成签到,获得积分10
19秒前
愉快若剑发布了新的文献求助10
20秒前
Godlove发布了新的文献求助10
20秒前
kkk发布了新的文献求助10
21秒前
23秒前
酷波er应助方法采纳,获得10
24秒前
25秒前
Godlove完成签到,获得积分10
26秒前
26秒前
打打应助kkk采纳,获得10
27秒前
Jared应助小鱼头采纳,获得10
28秒前
29秒前
飞快的孱完成签到,获得积分10
31秒前
李爱国应助慕木采纳,获得10
31秒前
fengfeng发布了新的文献求助10
32秒前
psg完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
33秒前
浮游应助求神拜佛采纳,获得10
34秒前
浮游应助求神拜佛采纳,获得10
34秒前
34秒前
sdfgv发布了新的文献求助10
36秒前
加菲丰丰举报外向的灵槐求助涉嫌违规
36秒前
完美世界应助百宝采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633720
求助须知:如何正确求助?哪些是违规求助? 4729357
关于积分的说明 14986552
捐赠科研通 4791560
什么是DOI,文献DOI怎么找? 2558957
邀请新用户注册赠送积分活动 1519405
关于科研通互助平台的介绍 1479650