Reducing the vicissitudes of heterologous prochiral substrate catalysis by alcohol dehydrogenases through machine learning algorithms

合成子 机器学习 人工智能 醇脱氢酶 偏最小二乘回归 支持向量机 计算机科学 基质(水族馆) 主成分分析 化学 算法 组合化学 立体化学 生物 生物化学 生态学
作者
Arindam Ghatak,Anirudh P. Shanbhag,Santanu Datta
出处
期刊:Biochemical and Biophysical Research Communications [Elsevier]
卷期号:691: 149298-149298
标识
DOI:10.1016/j.bbrc.2023.149298
摘要

Alcohol dehydrogenases (ADHs) are popular catalysts for synthesizing chiral synthons a vital step for active pharmaceutical intermediate (API) production. They are grouped into three superfamilies namely, medium-chain (MDRs), short-chain dehydrogenase/reductases (SDRs), and iron-containing alcohol dehydrogenases. The former two are used extensively for producing various chiral synthons. Many studies screen multiple enzymes or engineer a specific enzyme for catalyzing a substrate of interest. These processes are resource-intensive and intricate. The current study attempts to decipher the ability to match different ADHs with their ideal substrates using machine learning algorithms. We explore the catalysis of 284 antibacterial ketone intermediates, against MDRs and SDRs to demonstrate a unique pattern of activity. To facilitate machine learning we curated a dataset comprising 33 features, encompassing 4 descriptors for each compound. Subsequently, an ensemble of machine learning techniques viz. Partial Least Squares (PLS) regression, k-Nearest Neighbors (kNN) regression, and Support Vector Machine (SVM) regression, was harnessed. Moreover, the assimilation of Principal Component Analysis (PCA) augmented precision and accuracy, thereby refining and demarcating diverse compound classes. As such, this classification is useful for discerning substrates amenable to diverse alcohol dehydrogenases, thereby mitigating the reliance on high-throughput screening or engineering in identifying the optimal enzyme for specific substrate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
雪碧没气完成签到,获得积分10
1秒前
1秒前
时尚初柳完成签到,获得积分10
1秒前
2秒前
cavendipeng完成签到 ,获得积分10
2秒前
27应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得20
3秒前
欣慰枕头完成签到,获得积分10
3秒前
拼搏的无心完成签到,获得积分10
3秒前
nancylan应助科研通管家采纳,获得10
3秒前
充电宝应助阔达凝天采纳,获得100
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
典雅问寒应助科研通管家采纳,获得10
3秒前
坦率灵槐发布了新的文献求助10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
典雅问寒应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得30
3秒前
Frank应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
淡淡翠曼应助科研通管家采纳,获得10
4秒前
GHL发布了新的文献求助30
4秒前
英姑应助科研通管家采纳,获得10
4秒前
滕茹嫣发布了新的文献求助30
4秒前
典雅问寒应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
hackfeng应助科研通管家采纳,获得30
4秒前
无花果应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
5秒前
小猴子应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460995
求助须知:如何正确求助?哪些是违规求助? 4566103
关于积分的说明 14303321
捐赠科研通 4491747
什么是DOI,文献DOI怎么找? 2460462
邀请新用户注册赠送积分活动 1449774
关于科研通互助平台的介绍 1425554