Reducing the vicissitudes of heterologous prochiral substrate catalysis by alcohol dehydrogenases through machine learning algorithms

合成子 机器学习 人工智能 醇脱氢酶 偏最小二乘回归 支持向量机 计算机科学 基质(水族馆) 主成分分析 化学 算法 组合化学 立体化学 生物 生物化学 生态学
作者
Arindam Ghatak,Anirudh P. Shanbhag,Santanu Datta
出处
期刊:Biochemical and Biophysical Research Communications [Elsevier]
卷期号:691: 149298-149298
标识
DOI:10.1016/j.bbrc.2023.149298
摘要

Alcohol dehydrogenases (ADHs) are popular catalysts for synthesizing chiral synthons a vital step for active pharmaceutical intermediate (API) production. They are grouped into three superfamilies namely, medium-chain (MDRs), short-chain dehydrogenase/reductases (SDRs), and iron-containing alcohol dehydrogenases. The former two are used extensively for producing various chiral synthons. Many studies screen multiple enzymes or engineer a specific enzyme for catalyzing a substrate of interest. These processes are resource-intensive and intricate. The current study attempts to decipher the ability to match different ADHs with their ideal substrates using machine learning algorithms. We explore the catalysis of 284 antibacterial ketone intermediates, against MDRs and SDRs to demonstrate a unique pattern of activity. To facilitate machine learning we curated a dataset comprising 33 features, encompassing 4 descriptors for each compound. Subsequently, an ensemble of machine learning techniques viz. Partial Least Squares (PLS) regression, k-Nearest Neighbors (kNN) regression, and Support Vector Machine (SVM) regression, was harnessed. Moreover, the assimilation of Principal Component Analysis (PCA) augmented precision and accuracy, thereby refining and demarcating diverse compound classes. As such, this classification is useful for discerning substrates amenable to diverse alcohol dehydrogenases, thereby mitigating the reliance on high-throughput screening or engineering in identifying the optimal enzyme for specific substrate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
瑶瑶完成签到,获得积分10
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
1111应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
2秒前
1111应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
雨中小王应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
nn应助科研通管家采纳,获得10
3秒前
3秒前
nn应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得20
3秒前
3秒前
beichuanheqi发布了新的文献求助10
3秒前
jjyna发布了新的文献求助10
4秒前
Go发布了新的文献求助10
4秒前
5秒前
Yoona发布了新的文献求助10
5秒前
俏皮的邴发布了新的文献求助10
5秒前
6秒前
7秒前
温暖小霸王应助优美橘子采纳,获得10
7秒前
st发布了新的文献求助10
8秒前
无花果应助努力的学采纳,获得10
8秒前
左语发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594359
求助须知:如何正确求助?哪些是违规求助? 4680082
关于积分的说明 14812808
捐赠科研通 4646997
什么是DOI,文献DOI怎么找? 2534901
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469514