材料科学
透射率
电极
光电子学
制作
量子点
发光二极管
二极管
薄板电阻
纳米线
纳米技术
图层(电子)
医学
化学
替代医学
物理化学
病理
作者
Kejie Zhang,Lili Meng,Min Zhang,Yan Li,Lei Jiang,Huan Liu
标识
DOI:10.1002/adfm.202308468
摘要
Abstract Micro‐patterning silver nanowires (AgNWs) via solution processes is vital in making high‐performance transparent flexible electrodes (TFE) that have been widely used in optoelectronic devices. However, it has suffered from the limitation of a trade‐off relationship between the coverage and the arrangement of AgNWs, which determine the transparency and the conductivity, respectively. Here, unique AgNWs micro‐patterns, featuring as the crossing‐grid of high‐resolution and highly‐aligned AgNWs micro‐lines, which enable the micro‐pattern highly cross‐aligned with a limited 3.9% coverage, are developed. Consequently, a TFE with an ultra‐high transmittance over 98.5% and a sheet resistance of 25.5 Ω sq −1 is developed. Guided by the unit of triple conical fibers, AgNWs are controllable transferred onto the target area, leaving a line with a width‐resolution up to 2 µm. Simultaneously, AgNWs are aligned under the synergistic effect of both the solution‐shearing and the tri‐phase contact line confinement. Using the as‐developed TFE as either the top or the bottom electrode, a transparent quantum dot light‐emitting diode (T‐QLED) with a transmittance of 89.8%, as well as a flexible T‐QLED with a transmittance of 92.8% are demonstrated, much higher than those of T‐QLEDs reported. It is envisioned that the result would inspire the fabrication of high‐performance transparent optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI