Defect identification method for ultrasonic inspection of pipeline welds based on cross-modal zero-shot learning

计算机科学 人工智能 分类器(UML) 管道(软件) 判别式 模式识别(心理学) 情态动词 特征(语言学) 焊接 特征向量 机器学习 材料科学 哲学 高分子化学 程序设计语言 语言学 冶金
作者
Zeyu Yu,Qi Ma,Yuan Hongqiang,Du guofeng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025009-025009 被引量:2
标识
DOI:10.1088/1361-6501/ad0613
摘要

Abstract Ultrasonic inspection of pipeline welds still uses the traditional visual inspection signal method to identify pipeline defects. The identification of defects relies entirely on the subjective judgment of practitioners and is highly dependent on their level of experience. Deep learning models have achieved very good results in classification tasks, but they rely on a large number of annotated data samples for each category. However, it is difficult to collect a large number of samples with different defects and annotate them for the classification of pipe welding defects. Based on the idea of zero-shot learning (ZSL), which makes full use of experts’ semantic descriptions of defect categories, artificial semantic features are integrated cross-modally with ultrasonic inspection signal features. In this way, a common semantic space containing seen and unseen classes is constructed to achieve the detection of various defects. Meanwhile, to alleviate the problem of extreme imbalance of training data between the seen and unseen classes in ZSL model training, a ZSL model Feature-GAN-ZSL (FGZ) fused with a generative adversarial network (GAN) is proposed. The model utilizes a Feature-GAN network to generate unseen class features during training and adds a classifier to enhance the generation of features with stronger discriminative power. In the experiments, sample data for porosity, incomplete penetration, and cracks were used as visible classes, and samples for incomplete fusion and slag entrapment were used as unseen classes. Five state-of-the-art models in the ZSL domain were compared. The results show that the FGZ model has a good ability to recognize various defects, not only the types of defects that participated in the training but also the defects that did not participate in the training. This plays a perfect role in dealing with various pipeline welding defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jkq发布了新的文献求助10
1秒前
今后应助活泼的大哥哥采纳,获得10
1秒前
zerr36完成签到,获得积分10
2秒前
可爱的霖霖兔完成签到,获得积分10
3秒前
3秒前
lalala应助123采纳,获得10
3秒前
4秒前
5秒前
6秒前
11完成签到,获得积分10
6秒前
6秒前
li完成签到 ,获得积分10
7秒前
橙子呀~完成签到,获得积分10
7秒前
8秒前
方伟达发布了新的文献求助10
8秒前
9秒前
英俊的铭应助重翠采纳,获得10
9秒前
yizhe发布了新的文献求助10
11秒前
只与你发布了新的文献求助10
11秒前
欣喜代秋应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Hoo应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
buno应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
甜甜玫瑰应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
甜甜玫瑰应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
ephore应助科研通管家采纳,获得30
12秒前
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231718
求助须知:如何正确求助?哪些是违规求助? 2878696
关于积分的说明 8207336
捐赠科研通 2546135
什么是DOI,文献DOI怎么找? 1375733
科研通“疑难数据库(出版商)”最低求助积分说明 647459
邀请新用户注册赠送积分活动 622600