解耦(概率)
离散化
指数函数
非线性系统
数学
哈密顿量(控制论)
应用数学
矩阵指数
代表(政治)
控制理论(社会学)
数学分析
数学优化
计算机科学
微分方程
物理
控制(管理)
量子力学
控制工程
人工智能
政治
政治学
法学
工程类
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2023-01-01
标识
DOI:10.3934/dcdsb.2023186
摘要
Some efficient temporal first-, second- and higher-order numerical schemes are constructed for the coupled nonlinear Schrödinger-Boussinesq (CNSB) equations based on discretizing the Hamiltonian formula by an exponential method in a compact representation, discrete gradient method and composition method. The schemes are fully decoupling of the three solution components, which is distinct from the partially decoupled scheme in the literature, and their compact representation reduces the storage requirement and operation count. Rigorous analyses are carried out to show the exact preservation of the discrete energy for the proposed schemes. Numerical experiments verify the theoretical results and confirm the satisfactory solution accuracy and excellent efficiency of the present schemes.
科研通智能强力驱动
Strongly Powered by AbleSci AI