A Two-Stage Generative Model with CycleGAN and Joint Diffusion for MRI-based Brain Tumor Detection

人工智能 分割 计算机科学 模式识别(心理学) 阈值 生成模型 联合概率分布 图像分割 一般化 生成语法 图像(数学) 数学 统计 数学分析
作者
Wenxin Wang,Zhuo‐Xu Cui,Guanxun Cheng,Chentao Cao,Xi Xu,Ziwei Liu,Haifeng Wang,Yulong Qi,Yuanyuan Liu,Yanjie Zhu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.03074
摘要

Accurate detection and segmentation of brain tumors is critical for medical diagnosis. However, current supervised learning methods require extensively annotated images and the state-of-the-art generative models used in unsupervised methods often have limitations in covering the whole data distribution. In this paper, we propose a novel framework Two-Stage Generative Model (TSGM) that combines Cycle Generative Adversarial Network (CycleGAN) and Variance Exploding stochastic differential equation using joint probability (VE-JP) to improve brain tumor detection and segmentation. The CycleGAN is trained on unpaired data to generate abnormal images from healthy images as data prior. Then VE-JP is implemented to reconstruct healthy images using synthetic paired abnormal images as a guide, which alters only pathological regions but not regions of healthy. Notably, our method directly learned the joint probability distribution for conditional generation. The residual between input and reconstructed images suggests the abnormalities and a thresholding method is subsequently applied to obtain segmentation results. Furthermore, the multimodal results are weighted with different weights to improve the segmentation accuracy further. We validated our method on three datasets, and compared with other unsupervised methods for anomaly detection and segmentation. The DSC score of 0.8590 in BraTs2020 dataset, 0.6226 in ITCS dataset and 0.7403 in In-house dataset show that our method achieves better segmentation performance and has better generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zima完成签到,获得积分10
3秒前
辣辣叔发布了新的文献求助10
4秒前
4秒前
小马甲应助梧桐海洋19890采纳,获得10
4秒前
8秒前
ALIN完成签到,获得积分10
8秒前
小高发布了新的文献求助10
8秒前
ephore完成签到,获得积分0
8秒前
方董完成签到,获得积分10
9秒前
猪猪玉发布了新的文献求助10
10秒前
Youth发布了新的文献求助10
11秒前
12秒前
12秒前
14秒前
吃书的猪完成签到,获得积分10
14秒前
16秒前
17秒前
阿斯披粼完成签到,获得积分10
18秒前
18秒前
杜小完成签到,获得积分10
20秒前
完美世界应助渣渣采纳,获得10
21秒前
李云非少完成签到,获得积分10
21秒前
隐形曼青应助火星上绮采纳,获得30
21秒前
22秒前
快哒哒哒发布了新的文献求助10
22秒前
24秒前
否认冶游史完成签到,获得积分10
24秒前
24秒前
杜小发布了新的文献求助10
25秒前
英姑应助可一采纳,获得10
26秒前
27秒前
宋豆豆发布了新的文献求助10
28秒前
29秒前
29秒前
31秒前
图图发布了新的文献求助10
31秒前
稳重的安萱完成签到,获得积分10
32秒前
32秒前
亚威完成签到,获得积分10
34秒前
蘑菇安哲完成签到,获得积分20
34秒前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3166263
求助须知:如何正确求助?哪些是违规求助? 2817737
关于积分的说明 7917349
捐赠科研通 2477256
什么是DOI,文献DOI怎么找? 1319439
科研通“疑难数据库(出版商)”最低求助积分说明 632470
版权声明 602415