霍普夫分叉
理论(学习稳定性)
捕食
数学
分叉
控制理论(社会学)
平面(几何)
应用数学
功能(生物学)
鞍结分岔
经济
物理
计算机科学
生态学
生物
非线性系统
几何学
控制(管理)
量子力学
机器学习
管理
进化生物学
作者
Zi-Wei Liang,Xin-You Meng
标识
DOI:10.1016/j.chaos.2023.113955
摘要
In this paper, we consider a predator–prey model with fear response delay, gestation delay, fear effect, prey refuge, harvesting and Crowley–Martin type functional response. First, we discuss the model without delays and corroborate the positivity and boundedness of the solution. Then, we give some sufficient conditions for the existence and stability of three equilibriums. For the model with delays, we not only analyze the local stability of the positive equilibrium and the occurrence of Hopf bifurcation, but also obtain the crossing curves to study the stability switches of the positive equilibrium on the delays plane. Furthermore, we calculate the normal form of Hopf bifurcation and hence get the direction of Hopf bifurcation and the stability of bifurcated periodic solutions. At last, we support our findings by numerical simulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI