已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Potential of Remote Sensing Images for Soil Moisture Retrieving Using Ensemble Learning Methods in Vegetation-Covered Area

Boosting(机器学习) 梯度升压 归一化差异植被指数 特征选择 计算机科学 均方误差 遥感 人工智能 机器学习 随机森林 数学 叶面积指数 统计 地质学 生态学 生物
作者
Ya Gao,Liguo Wang,Geji Zhong,Yitong Wang,Jinghui Yang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 8149-8165 被引量:2
标识
DOI:10.1109/jstars.2023.3311096
摘要

Soil moisture (SM) plays a critical role in various fields such as agriculture, hydrology, and land-atmosphere interactions. Despite numerous studies investigating SM inversion using ensemble learning and microwave remote sensing, the optimal method remains uncertain. This study aims to evaluate the performance of the categorical boosting algorithm (CatBoost) in comparison to other multiple-boosting algorithms for SM prediction. Special emphasis is given to feature selection in a vegetation-covered area based on remote sensing imagery. Appropriate feature selection is vital for achieving accurate predictions, and this study focuses on identifying relevant features and assessing CatBoost's suitability for the task. The study incorporates several boosting algorithms including Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and CatBoost to estimate SM. Results indicate that radar backscatter coefficient, soil roughness, and digital elevation model (DEM) are crucial features for SM retrieval. Comparatively, CatBoost outperforms GBDT, XGBoost, and LightGBM in various feature combinations. The most favorable results are obtained when utilizing all features as inputs for the algorithm. These optimal results yield a mean absolute error (MAE) of 2.40 vol.%, mean relative error (MRE) of 0.16 vol.%, root mean square error (RMSE) of 3.26 vol.%, and Pearson correlation coefficient of 0.73. Additionally, the study analyzes the inversion results for different ranges of SM and Normalized Difference Vegetation Index (NDVI). Within the range of SM from 0 to 25 vol.% and NDVI from 0 to 0.7, utilizing all features yields the most accurate results. Using CatBoost, this approach achieves an MAE of 1.52 vol.%, MRE of 0.12 vol.%, RMSE of 2.11 vol.%, and R of 0.81. These findings demonstrate the immense potential of boosting techniques, particularly CatBoost, for SM retrieval from Sentinel-1 data. The study suggests that applying boosting algorithms, especially CatBoost, holds promise in accurately estimating surface SM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特微笑发布了新的文献求助100
1秒前
kexinLiu完成签到,获得积分20
5秒前
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
GG发布了新的文献求助10
8秒前
fly完成签到 ,获得积分10
11秒前
小哈完成签到 ,获得积分10
12秒前
可爱的函函应助芋头采纳,获得10
12秒前
CodeCraft应助Vanity采纳,获得10
12秒前
kexinLiu发布了新的文献求助10
16秒前
丹佛发布了新的文献求助10
18秒前
Lj发布了新的文献求助10
20秒前
李健应助点点采纳,获得10
26秒前
28秒前
30秒前
J1n9z完成签到,获得积分10
30秒前
31秒前
Vanity发布了新的文献求助10
32秒前
36秒前
Lj完成签到,获得积分10
38秒前
38秒前
40秒前
41秒前
苗苗043完成签到,获得积分10
42秒前
GG发布了新的文献求助20
43秒前
点点发布了新的文献求助10
44秒前
orixero应助一只西瓜茶采纳,获得30
44秒前
liu bo完成签到,获得积分0
51秒前
52秒前
一只西瓜茶完成签到,获得积分20
54秒前
Signs完成签到 ,获得积分10
54秒前
程昱完成签到 ,获得积分10
57秒前
59秒前
东东发布了新的文献求助10
1分钟前
点点完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787957
求助须知:如何正确求助?哪些是违规求助? 5703228
关于积分的说明 15473130
捐赠科研通 4916169
什么是DOI,文献DOI怎么找? 2646223
邀请新用户注册赠送积分活动 1593876
关于科研通互助平台的介绍 1548209