Potential of Remote Sensing Images for Soil Moisture Retrieving Using Ensemble Learning Methods in Vegetation-Covered Area

Boosting(机器学习) 梯度升压 归一化差异植被指数 特征选择 计算机科学 均方误差 遥感 人工智能 机器学习 随机森林 数学 叶面积指数 统计 地质学 生态学 生物
作者
Ya Gao,Liguo Wang,Geji Zhong,Yitong Wang,Jinghui Yang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 8149-8165 被引量:2
标识
DOI:10.1109/jstars.2023.3311096
摘要

Soil moisture (SM) plays a critical role in various fields such as agriculture, hydrology, and land-atmosphere interactions. Despite numerous studies investigating SM inversion using ensemble learning and microwave remote sensing, the optimal method remains uncertain. This study aims to evaluate the performance of the categorical boosting algorithm (CatBoost) in comparison to other multiple-boosting algorithms for SM prediction. Special emphasis is given to feature selection in a vegetation-covered area based on remote sensing imagery. Appropriate feature selection is vital for achieving accurate predictions, and this study focuses on identifying relevant features and assessing CatBoost's suitability for the task. The study incorporates several boosting algorithms including Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and CatBoost to estimate SM. Results indicate that radar backscatter coefficient, soil roughness, and digital elevation model (DEM) are crucial features for SM retrieval. Comparatively, CatBoost outperforms GBDT, XGBoost, and LightGBM in various feature combinations. The most favorable results are obtained when utilizing all features as inputs for the algorithm. These optimal results yield a mean absolute error (MAE) of 2.40 vol.%, mean relative error (MRE) of 0.16 vol.%, root mean square error (RMSE) of 3.26 vol.%, and Pearson correlation coefficient of 0.73. Additionally, the study analyzes the inversion results for different ranges of SM and Normalized Difference Vegetation Index (NDVI). Within the range of SM from 0 to 25 vol.% and NDVI from 0 to 0.7, utilizing all features yields the most accurate results. Using CatBoost, this approach achieves an MAE of 1.52 vol.%, MRE of 0.12 vol.%, RMSE of 2.11 vol.%, and R of 0.81. These findings demonstrate the immense potential of boosting techniques, particularly CatBoost, for SM retrieval from Sentinel-1 data. The study suggests that applying boosting algorithms, especially CatBoost, holds promise in accurately estimating surface SM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助小馒头采纳,获得10
1秒前
高大宛完成签到,获得积分10
1秒前
qifeng完成签到,获得积分10
1秒前
火星上半仙关注了科研通微信公众号
2秒前
初秋发布了新的文献求助10
3秒前
夜倾心完成签到,获得积分10
5秒前
丘比特应助wulilz采纳,获得10
6秒前
6秒前
7秒前
回复对方完成签到,获得积分10
7秒前
SciGPT应助ljj722采纳,获得10
7秒前
xiaozhang完成签到 ,获得积分10
7秒前
7秒前
8秒前
t东流水完成签到,获得积分10
8秒前
effervescence发布了新的文献求助10
8秒前
是盐的学术号吖完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
NexusExplorer应助cuidalice采纳,获得20
9秒前
科研通AI6应助机灵垣采纳,获得10
10秒前
12秒前
rui发布了新的文献求助10
12秒前
12秒前
罗龙生完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
安详晓亦发布了新的文献求助10
13秒前
touka666发布了新的文献求助10
14秒前
14秒前
15秒前
LiangxuanPan发布了新的文献求助10
16秒前
leishenwang完成签到,获得积分10
16秒前
霸气紫槐发布了新的文献求助10
17秒前
顺利骁发布了新的文献求助10
17秒前
坚强若冰完成签到,获得积分10
17秒前
tom发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660316
求助须知:如何正确求助?哪些是违规求助? 4832930
关于积分的说明 15090040
捐赠科研通 4818943
什么是DOI,文献DOI怎么找? 2578875
邀请新用户注册赠送积分活动 1533460
关于科研通互助平台的介绍 1492226