Potential of Remote Sensing Images for Soil Moisture Retrieving Using Ensemble Learning Methods in Vegetation-Covered Area

Boosting(机器学习) 梯度升压 归一化差异植被指数 特征选择 计算机科学 均方误差 遥感 人工智能 机器学习 随机森林 数学 叶面积指数 统计 地质学 生态学 生物
作者
Ya Gao,Liguo Wang,Geji Zhong,Yitong Wang,Jinghui Yang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 8149-8165 被引量:2
标识
DOI:10.1109/jstars.2023.3311096
摘要

Soil moisture (SM) plays a critical role in various fields such as agriculture, hydrology, and land-atmosphere interactions. Despite numerous studies investigating SM inversion using ensemble learning and microwave remote sensing, the optimal method remains uncertain. This study aims to evaluate the performance of the categorical boosting algorithm (CatBoost) in comparison to other multiple-boosting algorithms for SM prediction. Special emphasis is given to feature selection in a vegetation-covered area based on remote sensing imagery. Appropriate feature selection is vital for achieving accurate predictions, and this study focuses on identifying relevant features and assessing CatBoost's suitability for the task. The study incorporates several boosting algorithms including Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and CatBoost to estimate SM. Results indicate that radar backscatter coefficient, soil roughness, and digital elevation model (DEM) are crucial features for SM retrieval. Comparatively, CatBoost outperforms GBDT, XGBoost, and LightGBM in various feature combinations. The most favorable results are obtained when utilizing all features as inputs for the algorithm. These optimal results yield a mean absolute error (MAE) of 2.40 vol.%, mean relative error (MRE) of 0.16 vol.%, root mean square error (RMSE) of 3.26 vol.%, and Pearson correlation coefficient of 0.73. Additionally, the study analyzes the inversion results for different ranges of SM and Normalized Difference Vegetation Index (NDVI). Within the range of SM from 0 to 25 vol.% and NDVI from 0 to 0.7, utilizing all features yields the most accurate results. Using CatBoost, this approach achieves an MAE of 1.52 vol.%, MRE of 0.12 vol.%, RMSE of 2.11 vol.%, and R of 0.81. These findings demonstrate the immense potential of boosting techniques, particularly CatBoost, for SM retrieval from Sentinel-1 data. The study suggests that applying boosting algorithms, especially CatBoost, holds promise in accurately estimating surface SM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
燕荣完成签到 ,获得积分10
1秒前
Alan发布了新的文献求助10
1秒前
学术科研两开花完成签到,获得积分20
1秒前
烟花应助PDIF-CN2采纳,获得10
2秒前
脑洞疼应助风趣惜霜采纳,获得10
2秒前
韩jl完成签到,获得积分10
2秒前
孤独靖柏发布了新的文献求助10
2秒前
Ari_Kun完成签到 ,获得积分10
3秒前
4秒前
龙虾发票完成签到,获得积分10
4秒前
浮游应助四夕采纳,获得10
4秒前
开心的凝荷完成签到,获得积分20
4秒前
bunny发布了新的文献求助10
4秒前
4秒前
韩jl发布了新的文献求助10
4秒前
4秒前
小喵不上课完成签到,获得积分10
4秒前
青岛彭于晏完成签到 ,获得积分10
4秒前
吴龙发布了新的文献求助10
4秒前
浮游应助地学韦丰吉司长采纳,获得10
5秒前
5秒前
三又一十八完成签到,获得积分10
5秒前
6秒前
迪迦王发布了新的文献求助10
7秒前
张于小丸子完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
JamesPei应助FK7采纳,获得10
9秒前
张琦发布了新的文献求助40
9秒前
9秒前
9秒前
10秒前
candy6663339完成签到,获得积分10
10秒前
lasak发布了新的文献求助10
10秒前
川哥完成签到,获得积分10
10秒前
机灵的帽子完成签到,获得积分20
11秒前
四夕完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419193
求助须知:如何正确求助?哪些是违规求助? 4534612
关于积分的说明 14145618
捐赠科研通 4451091
什么是DOI,文献DOI怎么找? 2441538
邀请新用户注册赠送积分活动 1433211
关于科研通互助平台的介绍 1410533