Water molecules and oxygen-vacancy modulation of vanadium pentoxide with fast kinetics toward ultrahigh power density and durable flexible all-solid-state zinc ion battery

五氧化二铁 材料科学 阴极 功率密度 储能 化学物理 化学工程 功率(物理) 物理化学 化学 纳米技术 热力学 冶金 物理 工程类
作者
Wenda Qiu,Yunlei Tian,Shuting Lin,Aihua Lei,Zhangqi Geng,Kaitao Huang,Jiancong Chen,Fuchun Huang,Huajie Feng,Xihong Lu
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:85: 581-591 被引量:15
标识
DOI:10.1016/j.jechem.2023.06.042
摘要

Aqueous zinc ion battery (ZIB) with many virtues such as high safety, cost-effective, and good environmental compatibility is a large-scale energy storage technology with great application potential. Nevertheless, its application is severely hindered by the slow diffusion of zinc ions in desirable cathode materials. Herein, a technique of water-incorporation coupled with oxygen-vacancy modulation is exploited to improve the zinc ions diffusion kinetics in vanadium pentoxide (V2O5) cathode for ZIB. The incorporated water molecules replace lattice oxygen in V2O5, and function as pillars to expand interlayer distance. So the structural stability can be enhanced, and the zinc ions diffusion kinetics might also be promoted during the repeated intercalation/deintercalation. Meanwhile, the lattice water molecules can effectively enhance conductivity due to the electronic density modulation effect. Consequently, the modulated V2O5 (H-V2O5) cathode behaves with superior rate capacity and stable durability, achieving 234 mA h g−1 over 9000 cycles even at 20 A g−1. Furthermore, a flexible all-solid-state (ASS) ZIB has been constructed, exhibiting an admirable energy density of 196.6 W h kg−1 and impressive power density of 20.4 kW kg−1 as well as excellent long-term lifespan. Importantly, the assembled flexible ASS ZIB would be able to work in a large temperature span (from −20 to 70 °C). Additionally, we also uncover the energy storage mechanism of the H-V2O5 electrode, offering a novel approach for creating high-kinetics cathodes for multivalent ion storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
19应助科研通管家采纳,获得30
刚刚
Singularity应助科研通管家采纳,获得10
刚刚
Singularity应助科研通管家采纳,获得10
刚刚
刚刚
ferrycake应助科研通管家采纳,获得20
刚刚
HCLonely应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
1秒前
HCLonely应助科研通管家采纳,获得10
1秒前
huajinoob发布了新的文献求助30
1秒前
1秒前
饭老师发布了新的文献求助30
2秒前
xun发布了新的文献求助10
3秒前
川川完成签到,获得积分10
5秒前
笨笨娇完成签到 ,获得积分10
7秒前
Sean完成签到,获得积分10
7秒前
搜集达人应助xun采纳,获得10
10秒前
13秒前
聪明的怜南完成签到,获得积分10
13秒前
Jack80应助ho2eu采纳,获得50
16秒前
17秒前
标致溪流发布了新的文献求助10
21秒前
山黛Liebe完成签到,获得积分10
22秒前
重要的小猫咪完成签到,获得积分10
24秒前
25秒前
25秒前
星河梦枕完成签到,获得积分10
25秒前
萧水白应助靓丽剑心采纳,获得10
27秒前
31秒前
Paperduoduo发布了新的文献求助30
31秒前
NexusExplorer应助小栗采纳,获得10
31秒前
yyyyzhu完成签到 ,获得积分10
33秒前
jhx完成签到,获得积分10
34秒前
123应助陈乔采纳,获得10
34秒前
大海发布了新的文献求助10
37秒前
healer发布了新的文献求助10
37秒前
Ava应助shor0414采纳,获得10
39秒前
43秒前
李爱国应助细心电话采纳,获得10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313931
求助须知:如何正确求助?哪些是违规求助? 2946299
关于积分的说明 8529341
捐赠科研通 2621879
什么是DOI,文献DOI怎么找? 1434209
科研通“疑难数据库(出版商)”最低求助积分说明 665170
邀请新用户注册赠送积分活动 650738