PMNN: Physical model-driven neural network for solving time-fractional differential equations

人工神经网络 离散化 插值(计算机图形学) 计算机科学 应用数学 趋同(经济学) 微分方程 数学优化 算法 数学 人工智能 数学分析 经济增长 运动(物理) 经济
作者
Zhihua Ma,Jie Hou,Wenhao Zhu,Yaxin Peng,Li Ying
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:177: 114238-114238 被引量:2
标识
DOI:10.1016/j.chaos.2023.114238
摘要

In this paper, an innovative Physical Model-driven Neural Network (PMNN) method is proposed to solve time-fractional differential equations. It establishes a temporal iteration scheme based on physical model-driven neural networks which effectively combines deep neural networks (DNNs) with interpolation approximation of fractional derivatives. Specifically, once the fractional differential operator is discretized, DNNs are employed as a bridge to integrate interpolation approximation techniques with differential equations. On the basis of this integration, we construct a neural-based iteration scheme. Subsequently, by training DNNs to learn this temporal iteration scheme, approximate solutions to the differential equations can be obtained. The proposed method aims to preserve the intrinsic physical information within the equations as far as possible. It fully utilizes the powerful fitting capability of neural networks while maintaining the efficiency of the difference schemes for fractional differential equations. The experimental results show that the PMNN maintains precision comparable to traditional methods while exhibiting superior computational efficiency. This implies the potential of PMNN in addressing large-scale problems. Moreover, when considering both error and convergence rate, PMNN consistently outperforms fPINN. Additionally, the performance of PMNN on L2−1σ surpasses that on L1 in an overall comparison. The data and code can be found at https://github.com/DouMiao1226/PMNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不配.应助灵巧墨镜采纳,获得10
1秒前
王梓磬完成签到,获得积分10
1秒前
1秒前
优雅的冰岚完成签到,获得积分10
2秒前
隐形曼青应助石栾采纳,获得10
3秒前
满城烟沙完成签到 ,获得积分10
3秒前
在水一方应助manmankaixin采纳,获得10
3秒前
蔬菜狗狗完成签到,获得积分10
3秒前
Orange应助tzy采纳,获得10
3秒前
科目三应助王鹏程采纳,获得10
3秒前
慕青应助M1982采纳,获得10
3秒前
充电宝应助highhigh采纳,获得10
4秒前
昭昭完成签到,获得积分10
4秒前
lalala发布了新的文献求助10
4秒前
曾欢完成签到,获得积分10
5秒前
烂漫夜梦完成签到,获得积分10
5秒前
zhenzheng完成签到 ,获得积分10
5秒前
小熊完成签到,获得积分10
5秒前
5秒前
小刘完成签到,获得积分10
7秒前
自信的九娘完成签到,获得积分10
8秒前
QWER完成签到,获得积分10
8秒前
immortal完成签到,获得积分10
8秒前
飞快的珩完成签到,获得积分10
9秒前
9秒前
9秒前
王鹏程完成签到,获得积分10
9秒前
冲冲冲完成签到 ,获得积分10
10秒前
37927完成签到 ,获得积分10
10秒前
扁桃体永不发炎完成签到 ,获得积分10
10秒前
摘星的小孩完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
buno应助koito采纳,获得10
13秒前
HCLonely应助王梓磬采纳,获得10
13秒前
MING发布了新的文献求助10
13秒前
14秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234917
求助须知:如何正确求助?哪些是违规求助? 2881181
关于积分的说明 8218944
捐赠科研通 2548871
什么是DOI,文献DOI怎么找? 1377968
科研通“疑难数据库(出版商)”最低求助积分说明 648095
邀请新用户注册赠送积分活动 623563