PMNN: Physical model-driven neural network for solving time-fractional differential equations

人工神经网络 离散化 插值(计算机图形学) 计算机科学 应用数学 趋同(经济学) 微分方程 数学优化 算法 数学 人工智能 数学分析 经济增长 运动(物理) 经济
作者
Zhihua Ma,Jie Hou,Wenhao Zhu,Yaxin Peng,Li Ying
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:177: 114238-114238 被引量:2
标识
DOI:10.1016/j.chaos.2023.114238
摘要

In this paper, an innovative Physical Model-driven Neural Network (PMNN) method is proposed to solve time-fractional differential equations. It establishes a temporal iteration scheme based on physical model-driven neural networks which effectively combines deep neural networks (DNNs) with interpolation approximation of fractional derivatives. Specifically, once the fractional differential operator is discretized, DNNs are employed as a bridge to integrate interpolation approximation techniques with differential equations. On the basis of this integration, we construct a neural-based iteration scheme. Subsequently, by training DNNs to learn this temporal iteration scheme, approximate solutions to the differential equations can be obtained. The proposed method aims to preserve the intrinsic physical information within the equations as far as possible. It fully utilizes the powerful fitting capability of neural networks while maintaining the efficiency of the difference schemes for fractional differential equations. The experimental results show that the PMNN maintains precision comparable to traditional methods while exhibiting superior computational efficiency. This implies the potential of PMNN in addressing large-scale problems. Moreover, when considering both error and convergence rate, PMNN consistently outperforms fPINN. Additionally, the performance of PMNN on L2−1σ surpasses that on L1 in an overall comparison. The data and code can be found at https://github.com/DouMiao1226/PMNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助Yapi采纳,获得10
1秒前
yuanxianxian发布了新的文献求助10
1秒前
yang完成签到,获得积分10
1秒前
2秒前
CodeCraft应助Foalphaz采纳,获得10
3秒前
3秒前
容二遥发布了新的文献求助20
4秒前
Orange应助jsq采纳,获得10
4秒前
蔡大鲸完成签到,获得积分10
4秒前
不想取名字完成签到 ,获得积分10
4秒前
Stella发布了新的文献求助10
5秒前
CipherSage应助Szy采纳,获得10
5秒前
酷波er应助李凌霄采纳,获得10
6秒前
6秒前
Zengjx发布了新的文献求助10
6秒前
传奇3应助wangchong采纳,获得10
6秒前
飞槐完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
Infinity完成签到,获得积分10
7秒前
7秒前
7秒前
XD824发布了新的文献求助10
7秒前
Nam楠完成签到,获得积分10
8秒前
petpet发布了新的文献求助10
8秒前
abab小王完成签到,获得积分10
8秒前
罗罗罗完成签到 ,获得积分10
8秒前
8秒前
辛勤冷松完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助30
8秒前
8秒前
赘婿应助asdfqwer采纳,获得10
9秒前
mayao完成签到 ,获得积分10
9秒前
9秒前
打打应助li采纳,获得10
9秒前
9秒前
9秒前
烟花应助龙慧琳采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791