PMNN: Physical model-driven neural network for solving time-fractional differential equations

人工神经网络 离散化 插值(计算机图形学) 计算机科学 应用数学 趋同(经济学) 微分方程 数学优化 算法 数学 人工智能 数学分析 经济增长 运动(物理) 经济
作者
Zhihua Ma,Jie Hou,Wenhao Zhu,Yaxin Peng,Li Ying
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:177: 114238-114238 被引量:2
标识
DOI:10.1016/j.chaos.2023.114238
摘要

In this paper, an innovative Physical Model-driven Neural Network (PMNN) method is proposed to solve time-fractional differential equations. It establishes a temporal iteration scheme based on physical model-driven neural networks which effectively combines deep neural networks (DNNs) with interpolation approximation of fractional derivatives. Specifically, once the fractional differential operator is discretized, DNNs are employed as a bridge to integrate interpolation approximation techniques with differential equations. On the basis of this integration, we construct a neural-based iteration scheme. Subsequently, by training DNNs to learn this temporal iteration scheme, approximate solutions to the differential equations can be obtained. The proposed method aims to preserve the intrinsic physical information within the equations as far as possible. It fully utilizes the powerful fitting capability of neural networks while maintaining the efficiency of the difference schemes for fractional differential equations. The experimental results show that the PMNN maintains precision comparable to traditional methods while exhibiting superior computational efficiency. This implies the potential of PMNN in addressing large-scale problems. Moreover, when considering both error and convergence rate, PMNN consistently outperforms fPINN. Additionally, the performance of PMNN on L2−1σ surpasses that on L1 in an overall comparison. The data and code can be found at https://github.com/DouMiao1226/PMNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助雪白小丸子采纳,获得10
1秒前
辣么卄完成签到,获得积分10
1秒前
ZZZ发布了新的文献求助10
2秒前
3秒前
冷傲的太英完成签到 ,获得积分10
3秒前
嘿嘿发布了新的文献求助10
4秒前
大胆的时光完成签到 ,获得积分10
5秒前
joleisalau发布了新的文献求助10
6秒前
CHL完成签到,获得积分10
8秒前
11秒前
可爱的函函应助12121采纳,获得10
11秒前
Zzx完成签到,获得积分10
19秒前
hannuannuan完成签到 ,获得积分10
23秒前
辣么卄发布了新的文献求助10
23秒前
SciGPT应助yxf采纳,获得10
24秒前
illuminate发布了新的文献求助20
24秒前
坚强的安柏完成签到,获得积分10
24秒前
哆来咪完成签到,获得积分10
25秒前
打打应助梧桐采纳,获得10
27秒前
27秒前
潘润朗完成签到,获得积分10
27秒前
墨兮完成签到 ,获得积分10
28秒前
汉堡包应助echo采纳,获得10
29秒前
29秒前
31秒前
32秒前
夏夏完成签到 ,获得积分10
33秒前
整齐的未来完成签到 ,获得积分10
34秒前
joleisalau完成签到,获得积分10
34秒前
36秒前
科研通AI6应助YY采纳,获得10
37秒前
Hello应助YY采纳,获得10
37秒前
万能图书馆应助YY采纳,获得10
37秒前
yxf发布了新的文献求助10
37秒前
困告完成签到,获得积分10
40秒前
英吉利25发布了新的文献求助20
41秒前
慵懒跑不动完成签到,获得积分20
41秒前
等意送汝发布了新的文献求助10
42秒前
跳跃的半双完成签到,获得积分10
42秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560221
求助须知:如何正确求助?哪些是违规求助? 4645390
关于积分的说明 14675061
捐赠科研通 4586534
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490087
关于科研通互助平台的介绍 1460900