Predicting the Outcome of Construction Change Disputes Using Machine-Learning Algorithms

结果(博弈论) 计算机科学 算法 机器学习 人工智能 经济 微观经济学
作者
Aaraf Shukur Alqaisi,Hossein Ataei,Abolfazl Seyrfar,Mohammad Al Omari
出处
期刊:Journal of Legal Affairs and Dispute Resolution in Engineering and Construction [American Society of Civil Engineers]
卷期号:16 (1) 被引量:1
标识
DOI:10.1061/jladah.ladr-1051
摘要

Construction disputes are among the most stressful events that may occur throughout the course of a project. Construction executives are increasingly seeking new means to avoid and resolve disputes. Artificial intelligence may be utilized to predict court judgments by uncovering hidden links between interconnected dispute factors, giving disputing parties a better insight on their case position and likely possible outcome. This paper investigates the change order disputes by creating a list of legal factors on which the court rulings were based for previously similar cases in order to determine the likelihood of a potential outcome for a future claim. Various machine-learning models are utilized and tested to determine the best conforming algorithm. These models are evaluated using confusion matrix based on their accuracy, precision, recall, and sensitivity. This study found that the random forest algorithm rendered the best overall performance and achieved (95.0%) prediction accuracy. The model developed in this research may be utilized as a practical means by disputing parties to evaluate and decide whether to file a claim or to settle it privately to resolve the disputes more efficiently for construction dispute negotiation purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
汉堡包应助懒觉大王采纳,获得10
1秒前
JamesPei应助SW采纳,获得10
1秒前
刻苦冬菱完成签到,获得积分10
1秒前
xiaohunagya发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
田様应助湛湛采纳,获得10
3秒前
pluto应助123123123采纳,获得10
3秒前
Iso完成签到,获得积分10
3秒前
3秒前
未来发布了新的文献求助10
3秒前
领导范儿应助YC_Kao采纳,获得10
5秒前
A阿澍完成签到,获得积分10
5秒前
广阔天地完成签到 ,获得积分10
5秒前
6秒前
Superman完成签到 ,获得积分10
6秒前
Paradox发布了新的文献求助10
6秒前
Paradox发布了新的文献求助10
6秒前
Paradox发布了新的文献求助10
6秒前
猪猪hero发布了新的文献求助10
6秒前
多妈完成签到,获得积分10
7秒前
7秒前
999完成签到 ,获得积分10
8秒前
科研小菜鸡完成签到,获得积分10
8秒前
李丽发布了新的文献求助10
8秒前
8秒前
科研白菜发布了新的文献求助10
9秒前
summer1z完成签到,获得积分10
9秒前
Iso发布了新的文献求助10
9秒前
衣吾余应助AlbertCoA采纳,获得10
10秒前
1147468624完成签到,获得积分20
10秒前
zxy完成签到,获得积分10
10秒前
TQY发布了新的文献求助10
10秒前
Dora发布了新的文献求助30
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009765
求助须知:如何正确求助?哪些是违规求助? 3549723
关于积分的说明 11303208
捐赠科研通 3284239
什么是DOI,文献DOI怎么找? 1810545
邀请新用户注册赠送积分活动 886356
科研通“疑难数据库(出版商)”最低求助积分说明 811355