结果(博弈论)
计算机科学
算法
机器学习
人工智能
经济
微观经济学
作者
Aaraf Shukur Alqaisi,Hossein Ataei,Abolfazl Seyrfar,Mohammad Al Omari
出处
期刊:Journal of Legal Affairs and Dispute Resolution in Engineering and Construction
[American Society of Civil Engineers]
日期:2023-11-10
卷期号:16 (1)
被引量:1
标识
DOI:10.1061/jladah.ladr-1051
摘要
Construction disputes are among the most stressful events that may occur throughout the course of a project. Construction executives are increasingly seeking new means to avoid and resolve disputes. Artificial intelligence may be utilized to predict court judgments by uncovering hidden links between interconnected dispute factors, giving disputing parties a better insight on their case position and likely possible outcome. This paper investigates the change order disputes by creating a list of legal factors on which the court rulings were based for previously similar cases in order to determine the likelihood of a potential outcome for a future claim. Various machine-learning models are utilized and tested to determine the best conforming algorithm. These models are evaluated using confusion matrix based on their accuracy, precision, recall, and sensitivity. This study found that the random forest algorithm rendered the best overall performance and achieved (95.0%) prediction accuracy. The model developed in this research may be utilized as a practical means by disputing parties to evaluate and decide whether to file a claim or to settle it privately to resolve the disputes more efficiently for construction dispute negotiation purposes.
科研通智能强力驱动
Strongly Powered by AbleSci AI