重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Predicting the Outcome of Construction Change Disputes Using Machine-Learning Algorithms

结果(博弈论) 计算机科学 算法 机器学习 人工智能 经济 微观经济学
作者
Aaraf Shukur Alqaisi,Hossein Ataei,Abolfazl Seyrfar,Mohammad Al Omari
出处
期刊:Journal of Legal Affairs and Dispute Resolution in Engineering and Construction [American Society of Civil Engineers]
卷期号:16 (1) 被引量:1
标识
DOI:10.1061/jladah.ladr-1051
摘要

Construction disputes are among the most stressful events that may occur throughout the course of a project. Construction executives are increasingly seeking new means to avoid and resolve disputes. Artificial intelligence may be utilized to predict court judgments by uncovering hidden links between interconnected dispute factors, giving disputing parties a better insight on their case position and likely possible outcome. This paper investigates the change order disputes by creating a list of legal factors on which the court rulings were based for previously similar cases in order to determine the likelihood of a potential outcome for a future claim. Various machine-learning models are utilized and tested to determine the best conforming algorithm. These models are evaluated using confusion matrix based on their accuracy, precision, recall, and sensitivity. This study found that the random forest algorithm rendered the best overall performance and achieved (95.0%) prediction accuracy. The model developed in this research may be utilized as a practical means by disputing parties to evaluate and decide whether to file a claim or to settle it privately to resolve the disputes more efficiently for construction dispute negotiation purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助ggjy采纳,获得10
刚刚
栗子发布了新的文献求助10
刚刚
华仔应助赵文丽采纳,获得10
刚刚
1秒前
1秒前
石土土完成签到 ,获得积分10
1秒前
张夏俊完成签到,获得积分10
1秒前
1秒前
文俊伟完成签到,获得积分10
2秒前
crane发布了新的文献求助10
2秒前
2秒前
2秒前
平日很嚣张女士完成签到,获得积分10
3秒前
4秒前
amelia发布了新的文献求助10
5秒前
6秒前
天熙发布了新的文献求助10
6秒前
6秒前
情怀应助苦咖啡采纳,获得10
6秒前
隐形萃发布了新的文献求助10
7秒前
7秒前
浮游应助温柔的语柔采纳,获得10
8秒前
8秒前
满意怜容发布了新的文献求助10
9秒前
深情安青应助Dr.向采纳,获得10
9秒前
苗条采蓝发布了新的文献求助10
9秒前
crane完成签到,获得积分10
9秒前
852应助MailkMonk采纳,获得10
9秒前
梁凯华完成签到,获得积分10
9秒前
10秒前
kiki发布了新的文献求助10
10秒前
112完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
12秒前
1renebaebae完成签到,获得积分20
12秒前
SciGPT应助听风说采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466189
求助须知:如何正确求助?哪些是违规求助? 4570151
关于积分的说明 14323225
捐赠科研通 4496641
什么是DOI,文献DOI怎么找? 2463456
邀请新用户注册赠送积分活动 1452353
关于科研通互助平台的介绍 1427516