Predicting the Outcome of Construction Change Disputes Using Machine-Learning Algorithms

结果(博弈论) 计算机科学 算法 机器学习 人工智能 经济 微观经济学
作者
Aaraf Shukur Alqaisi,Hossein Ataei,Abolfazl Seyrfar,Mohammad Al Omari
出处
期刊:Journal of Legal Affairs and Dispute Resolution in Engineering and Construction [American Society of Civil Engineers]
卷期号:16 (1) 被引量:1
标识
DOI:10.1061/jladah.ladr-1051
摘要

Construction disputes are among the most stressful events that may occur throughout the course of a project. Construction executives are increasingly seeking new means to avoid and resolve disputes. Artificial intelligence may be utilized to predict court judgments by uncovering hidden links between interconnected dispute factors, giving disputing parties a better insight on their case position and likely possible outcome. This paper investigates the change order disputes by creating a list of legal factors on which the court rulings were based for previously similar cases in order to determine the likelihood of a potential outcome for a future claim. Various machine-learning models are utilized and tested to determine the best conforming algorithm. These models are evaluated using confusion matrix based on their accuracy, precision, recall, and sensitivity. This study found that the random forest algorithm rendered the best overall performance and achieved (95.0%) prediction accuracy. The model developed in this research may be utilized as a practical means by disputing parties to evaluate and decide whether to file a claim or to settle it privately to resolve the disputes more efficiently for construction dispute negotiation purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
eating完成签到,获得积分10
1秒前
生动凡梦完成签到,获得积分20
2秒前
2秒前
不瞌睡应助科研通管家采纳,获得40
2秒前
汉堡包应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
梁三柏应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
彭于晏应助yongjie采纳,获得30
3秒前
3秒前
橙汁得配曼妥思完成签到,获得积分10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
梁三柏应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
zfd完成签到,获得积分10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得30
3秒前
water应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
4秒前
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得50
4秒前
小蘑菇应助科研通管家采纳,获得30
4秒前
Akashi完成签到,获得积分10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911110
求助须知:如何正确求助?哪些是违规求助? 4186617
关于积分的说明 13000608
捐赠科研通 3954386
什么是DOI,文献DOI怎么找? 2168285
邀请新用户注册赠送积分活动 1186699
关于科研通互助平台的介绍 1094037