已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting the Outcome of Construction Change Disputes Using Machine-Learning Algorithms

结果(博弈论) 计算机科学 算法 机器学习 人工智能 经济 微观经济学
作者
Aaraf Shukur Alqaisi,Hossein Ataei,Abolfazl Seyrfar,Mohammad Al Omari
出处
期刊:Journal of Legal Affairs and Dispute Resolution in Engineering and Construction [American Society of Civil Engineers]
卷期号:16 (1) 被引量:1
标识
DOI:10.1061/jladah.ladr-1051
摘要

Construction disputes are among the most stressful events that may occur throughout the course of a project. Construction executives are increasingly seeking new means to avoid and resolve disputes. Artificial intelligence may be utilized to predict court judgments by uncovering hidden links between interconnected dispute factors, giving disputing parties a better insight on their case position and likely possible outcome. This paper investigates the change order disputes by creating a list of legal factors on which the court rulings were based for previously similar cases in order to determine the likelihood of a potential outcome for a future claim. Various machine-learning models are utilized and tested to determine the best conforming algorithm. These models are evaluated using confusion matrix based on their accuracy, precision, recall, and sensitivity. This study found that the random forest algorithm rendered the best overall performance and achieved (95.0%) prediction accuracy. The model developed in this research may be utilized as a practical means by disputing parties to evaluate and decide whether to file a claim or to settle it privately to resolve the disputes more efficiently for construction dispute negotiation purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴YB发布了新的文献求助20
刚刚
开放灭绝发布了新的文献求助10
1秒前
1秒前
充电宝应助wang采纳,获得10
2秒前
芮芝完成签到 ,获得积分10
3秒前
3秒前
万能图书馆应助嘟嘟嘟采纳,获得10
3秒前
郑麻完成签到,获得积分10
4秒前
小白完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
xiayu发布了新的文献求助30
7秒前
paperdl关注了科研通微信公众号
8秒前
8秒前
111完成签到,获得积分10
9秒前
朴素采柳发布了新的文献求助10
10秒前
知性的十三完成签到,获得积分10
12秒前
清零发布了新的文献求助10
14秒前
16秒前
botanist完成签到 ,获得积分10
16秒前
popo完成签到,获得积分10
17秒前
科研通AI2S应助21采纳,获得10
18秒前
xyzlancet发布了新的文献求助10
20秒前
郑麻发布了新的文献求助10
20秒前
神可馨完成签到 ,获得积分10
20秒前
21秒前
popo发布了新的文献求助10
21秒前
天天快乐应助连理枝采纳,获得10
21秒前
111发布了新的文献求助10
22秒前
23秒前
想想完成签到,获得积分20
25秒前
西西完成签到,获得积分10
27秒前
焱焱不忘完成签到 ,获得积分10
27秒前
suuuu完成签到 ,获得积分10
30秒前
30秒前
31秒前
HHHH完成签到,获得积分10
31秒前
32秒前
33秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3117328
求助须知:如何正确求助?哪些是违规求助? 2767297
关于积分的说明 7690348
捐赠科研通 2422557
什么是DOI,文献DOI怎么找? 1286354
科研通“疑难数据库(出版商)”最低求助积分说明 620301
版权声明 599856