Predicting the Outcome of Construction Change Disputes Using Machine-Learning Algorithms

结果(博弈论) 计算机科学 算法 机器学习 人工智能 经济 微观经济学
作者
Aaraf Shukur Alqaisi,Hossein Ataei,Abolfazl Seyrfar,Mohammad Al Omari
出处
期刊:Journal of Legal Affairs and Dispute Resolution in Engineering and Construction [American Society of Civil Engineers]
卷期号:16 (1) 被引量:1
标识
DOI:10.1061/jladah.ladr-1051
摘要

Construction disputes are among the most stressful events that may occur throughout the course of a project. Construction executives are increasingly seeking new means to avoid and resolve disputes. Artificial intelligence may be utilized to predict court judgments by uncovering hidden links between interconnected dispute factors, giving disputing parties a better insight on their case position and likely possible outcome. This paper investigates the change order disputes by creating a list of legal factors on which the court rulings were based for previously similar cases in order to determine the likelihood of a potential outcome for a future claim. Various machine-learning models are utilized and tested to determine the best conforming algorithm. These models are evaluated using confusion matrix based on their accuracy, precision, recall, and sensitivity. This study found that the random forest algorithm rendered the best overall performance and achieved (95.0%) prediction accuracy. The model developed in this research may be utilized as a practical means by disputing parties to evaluate and decide whether to file a claim or to settle it privately to resolve the disputes more efficiently for construction dispute negotiation purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴灵完成签到,获得积分10
刚刚
飞鸿影下完成签到 ,获得积分10
1秒前
ding应助白水采纳,获得10
1秒前
Yvan完成签到,获得积分10
1秒前
2秒前
喵喵完成签到 ,获得积分10
2秒前
云草发布了新的文献求助10
2秒前
yanchen完成签到,获得积分10
4秒前
guozizi发布了新的文献求助30
4秒前
在水一方应助火羊宝采纳,获得10
4秒前
Fayth发布了新的文献求助10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
一期一会完成签到,获得积分10
5秒前
思源应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
newma完成签到,获得积分10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
6秒前
奇犽请爱我完成签到,获得积分10
6秒前
李健应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
思源应助科研通管家采纳,获得10
6秒前
6秒前
percy发布了新的文献求助10
6秒前
啊桂发布了新的文献求助10
6秒前
6秒前
yueyue完成签到,获得积分10
6秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388268
求助须知:如何正确求助?哪些是违规求助? 4510318
关于积分的说明 14034886
捐赠科研通 4421132
什么是DOI,文献DOI怎么找? 2428650
邀请新用户注册赠送积分活动 1421284
关于科研通互助平台的介绍 1400517