亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HT-RCM: Hashimoto's Thyroiditis Ultrasound Image Classification Model Based on Res-FCT and Res-CAM

计算机科学 残余物 人工智能 超声波 模式识别(心理学) 光学(聚焦) 卷积(计算机科学) 甲状腺炎 菌类 医学 放射科 甲状腺 算法 内科学 物理 光学 生物 人工神经网络 生态学
作者
Wenchao Jiang,Kang Chen,Zhipeng Liang,Tianchun Luo,Guanghui Yue,Zhiming Zhao,Wei Song,Ling Zhao,Jianxuan Wen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (2): 941-951 被引量:3
标识
DOI:10.1109/jbhi.2023.3331944
摘要

The early lesions of Hashimoto's thyroiditis are inconspicuous, and the ultrasonic features of these early lesions are indistinguishable from other thyroid diseases. This paper proposes a Hashimoto Thyroiditis ultrasound image classification model HT-RCM which consists of a Residual Full Convolution Transformer (Res-FCT) model and a Residual Channel Attention Module (Res-CAM). To collect the low-order information caused by hypoechoic signals accurately, the residual connection is injected between FCTs to form Res-FCT which helps HT-RCM superimpose the low-order input information and high-order output information together. Res-FCT can make HT-RCM focus more on hypoechoic information while avoiding gradient dispersion. The initial feature map is inserted into Res-FCT again through a down-sampling component, which further helps HT-RCM exact multi-level original semantic information in the ultrasound image. Res-CAM is constructed by implementing a residual connection between a channel attention module and a convolution layer. Res-CAM can effectively increase the weights of the lesion channels while suppressing the weights of the noise channels, which makes HT-RCM focus more on the lesion regions. The experimental results on our collected dataset show that HT-RCM outperforms the mainstream models and obtains state-of-the-art performance in HT ultrasound image classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默笙完成签到 ,获得积分10
1秒前
6秒前
11秒前
ch完成签到,获得积分10
22秒前
34秒前
37秒前
一颗忧伤的覆盆子完成签到,获得积分10
40秒前
支雨泽完成签到,获得积分10
40秒前
香芹又青完成签到,获得积分10
40秒前
51秒前
年鱼精完成签到 ,获得积分10
53秒前
56秒前
英俊的铭应助科研通管家采纳,获得10
58秒前
59秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
sys549发布了新的文献求助10
1分钟前
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
2分钟前
月亮夏的夏完成签到,获得积分10
2分钟前
smottom应助月亮夏的夏采纳,获得10
2分钟前
2分钟前
2分钟前
清脆觅珍发布了新的文献求助10
2分钟前
袁青寒完成签到,获得积分10
2分钟前
2分钟前
研友_VZG7GZ应助毕业采纳,获得10
2分钟前
淡淡诗柳发布了新的文献求助20
3分钟前
9527完成签到,获得积分10
3分钟前
3分钟前
淡淡诗柳完成签到,获得积分10
3分钟前
ch发布了新的文献求助10
3分钟前
3分钟前
Gydl完成签到,获得积分10
3分钟前
3分钟前
美满尔蓝完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772752
求助须知:如何正确求助?哪些是违规求助? 5601889
关于积分的说明 15430003
捐赠科研通 4905623
什么是DOI,文献DOI怎么找? 2639561
邀请新用户注册赠送积分活动 1587463
关于科研通互助平台的介绍 1542394