发酵
丁酸
咖啡酸
乳酸
醋酸
生物化学
肠道菌群
脂多糖
化学
醋酸菌
细菌
食品科学
微生物学
生物
抗氧化剂
内分泌学
遗传学
作者
Jing Cheng,Guangwen Zhang,Liu Liu,Jianming Luo,Xichun Peng
摘要
β-Glucans are widely sourced and have various physiological effects, including anti-inflammatory effects. However, the strength of the anti-inflammatory activity of β-glucans from different sources remains unknown due to the lack of rapid and effective biomarkers. This study therefore aimed to screen out the β-glucans with strong anti-inflammatory activity from five different sources and to further screen out possible biomarkers in metabolites after fermenting the β-glucans with gut microorganisms.The results showed that all five β-glucans inhibited the production of lipopolysaccharide (LPS)-induced pro-inflammatory mediators and suppressed the mRNA expression level of TLR4/MyD88. Their anti-inflammatory mechanisms involved the inhibition of intracellular reactive oxygen species (ROS) production and suppression of mRNA expression of the NF-κB pathway and JNK pathway. Among them, barley β-glucan exhibited the strongest anti-inflammatory effect, followed by Ganoderma lucidum β-glucan. Enhanced anti-inflammatory activity of β-glucan was found after fermentation and may be related to the increased abundance of metabolites such as vanillin, dihydroxyphenylacetic acid, caffeic acid, acetic acid, butyric acid, and lactic acid. They were strongly positively correlated to the abundance of beneficial bacteria such as Blautia, suggesting that the production of those metabolites may be responsible for the flourishing of the beneficial bacteria.In conclusion, barley was a preferred raw material for the preparation of β-glucans with strong anti-inflammatory activity. Vanillin, dihydroxyphenylacetic acid, caffeic acid, acetic acid, butyric acid, and lactic acid were the possible biomarkers that could be utilized to evaluate the anti-inflammatory effect of β-glucans. © 2023 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI