Fractal Dimension as a discriminative feature for high accuracy classification in motor imagery EEG-based brain-computer interface

运动表象 脑-机接口 判别式 脑电图 计算机科学 人工智能 接口(物质) 模式识别(心理学) 特征(语言学) 神经生理学 语音识别 心理学 神经科学 语言学 哲学 气泡 最大气泡压力法 并行计算
作者
Sadaf Moaveninejad,Valentina D’Onofrio,Franca Tecchio,Francesco Ferracuti,Sabrina Iarlori,Andrea Monteriù,Camillo Porcaro
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107944-107944 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107944
摘要

The brain-computer interface (BCI) technology acquires human brain electrical signals, which can be effectively and successfully used to control external devices, potentially supporting subjects suffering from motor impairments in the interaction with the environment. To this aim, BCI systems must correctly decode and interpret neurophysiological signals reflecting the intention of the subjects to move. Therefore, the accurate classification of single events in motor tasks represents a fundamental challenge in ensuring efficient communication and control between users and BCIs. Movement-associated changes in electroencephalographic (EEG) sensorimotor rhythms, such as event-related desynchronization (ERD), are well-known features of discriminating motor tasks. Fractal dimension (FD) can be used to evaluate the complexity and self-similarity in brain signals, potentially providing complementary information to frequency-based signal features. In the present work, we introduce FD as a novel feature for subject-independent event classification, and we test several machine learning (ML) models in behavioural tasks of motor imagery (MI) and motor execution (ME). Our results show that FD improves the classification accuracy of ML compared to ERD. Furthermore, unilateral hand movements have higher classification accuracy than bilateral movements in both MI and ME tasks. These results provide further insights into subject-independent event classification in BCI systems and demonstrate the potential of FD as a discriminative feature for EEG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang完成签到,获得积分10
1秒前
风雨完成签到,获得积分10
1秒前
1秒前
2秒前
彭于晏应助小西采纳,获得30
2秒前
可爱的函函应助布布采纳,获得10
3秒前
4秒前
轩辕德地发布了新的文献求助10
4秒前
nine发布了新的文献求助30
4秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
5秒前
JamesPei应助小敦采纳,获得10
5秒前
今非发布了新的文献求助10
5秒前
李健的小迷弟应助通~采纳,获得30
5秒前
5秒前
5秒前
fanfan44390发布了新的文献求助10
5秒前
Zhang完成签到,获得积分10
6秒前
小二郎应助小田采纳,获得10
7秒前
7秒前
隐形曼青应助liike采纳,获得10
7秒前
phd发布了新的文献求助10
7秒前
7秒前
dingdong发布了新的文献求助30
7秒前
Orange应助清秀的语山采纳,获得50
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
8秒前
无花果应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
8秒前
大李包完成签到,获得积分10
8秒前
思源应助费城青年采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
帮助我的人永远不死完成签到,获得积分20
8秒前
无花果应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794