The neural substrates of how model-based learning affects risk taking: Functional coupling between right cerebellum and left caudate

心理学 认知心理学 尾状核 神经科学 基于体素的形态计量学 白质 磁共振成像 医学 放射科
作者
Hangfeng Huo,Elise Lesage,Wenshan Dong,Tom Verguts,Carol A. Seger,Sheng-Peng Diao,Tingyong Feng,Qi Chen
出处
期刊:Brain and Cognition [Elsevier]
卷期号:172: 106088-106088
标识
DOI:10.1016/j.bandc.2023.106088
摘要

Higher executive control capacity allows people to appropriately evaluate risk and avoid both excessive risk aversion and excessive risk-taking. The neural mechanisms underlying this relationship between executive function and risk taking are still unknown. We used voxel-based morphometry (VBM) analysis combined with resting-state functional connectivity (rs-FC) to evaluate how one component of executive function, model-based learning, relates to risk taking. We measured individuals' use of the model-based learning system with the two-step task, and risk taking with the Balloon Analogue Risk Task. Behavioral results indicated that risk taking was positively correlated with the model-based weighting parameter ω. The VBM results showed a positive association between model-based learning and gray matter volume in the right cerebellum (RCere) and left inferior parietal lobule (LIPL). Functional connectivity results suggested that the coupling between RCere and the left caudate (LCAU) was correlated with both model-based learning and risk taking. Mediation analysis indicated that RCere-LCAU functional connectivity completely mediated the effect of model-based learning on risk taking. These results indicate that learners who favor model-based strategies also engage in more appropriate risky behaviors through interactions between reward-based learning, error-based learning and executive control subserved by a caudate, cerebellar and parietal network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西柚完成签到,获得积分10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
kingwill应助科研通管家采纳,获得20
刚刚
SciGPT应助洛鸢采纳,获得10
刚刚
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
soso应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
yizhiGao应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
星威应助科研通管家采纳,获得20
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
1秒前
天天快乐应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
研友_VZG7GZ应助kevindeng采纳,获得20
2秒前
酷炫板凳完成签到 ,获得积分10
3秒前
凡仔完成签到,获得积分10
3秒前
Haicheng完成签到,获得积分10
3秒前
3秒前
Grayball应助平云采纳,获得10
4秒前
子车谷波完成签到,获得积分10
5秒前
5秒前
苏安泠完成签到 ,获得积分10
6秒前
6秒前
英勇的思天完成签到 ,获得积分10
7秒前
zzqx完成签到,获得积分10
9秒前
起司嗯完成签到,获得积分10
9秒前
开放鸵鸟完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762