已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DA-CNN-based similar terahertz signal identification for intelligent characterization of internal debonding defects of composites under high-resolution mode

太赫兹辐射 纤维增强塑料 卷积神经网络 表征(材料科学) 材料科学 计算机科学 特征提取 鉴定(生物学) 人工智能 模式识别(心理学) 复合材料 光电子学 纳米技术 植物 生物
作者
Xingyu Wang,Yafei Xu,Yuqing Cui,Wenkang Li,Liuyang Zhang,Ruqiang Yan,Xuefeng Chen
出处
期刊:Composite Structures [Elsevier]
卷期号:322: 117412-117412 被引量:10
标识
DOI:10.1016/j.compstruct.2023.117412
摘要

With the prevalent occupation of glass fiber reinforced polymer (GFRP) composites in engineering structures, quality inspection of GFRPs is particularly urgent to evaluate their health state. As a typical damage form during the manufacturing and lifetime service of GFRP, debonding defects not only degrades the structural strength and remaining performance of composite materials, but also brings about unpredictable challenge to overall safety of the system. Recently, the combination of terahertz (THz) spectroscopy and artificial intelligence (AI) technique has emerged great potential for automatic defect identification inside composites. However, conventional AI algorithms are difficult to classify similar THz signals and may degrade THz detection accuracy of defects due to limited feature extraction capability. Here we propose a deformable attention convolutional neural network (DA-CNN) framework-based THz characterization system, in which the defect datasets are established firstly by the THz time domain spectroscopy (THz-TDS), and then the DA-CNN framework is adopted to realize the automatic defect location and imaging by accurate THz signals classification. It is worth noting that the proposed DA-CNN framework has powerful feature extraction capability to automatically identify internal GFRP defects, especially for similar THz signals at the edge of debonding defects. A series of experiments have been performed to validate the effectiveness of proposed system, which will provide a new solution for intelligent and automatic THz characterization of internal debonding defects of composites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳短靴完成签到 ,获得积分10
刚刚
老武完成签到,获得积分10
刚刚
wanci应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
122319应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
tuanheqi应助科研通管家采纳,获得80
1秒前
xxfsx应助科研通管家采纳,获得10
1秒前
2秒前
不可以哦完成签到 ,获得积分10
2秒前
etrh完成签到 ,获得积分10
2秒前
真实的瑾瑜完成签到 ,获得积分10
2秒前
鲤鱼寻菡完成签到 ,获得积分10
3秒前
4秒前
7秒前
忽远忽近的她完成签到 ,获得积分10
8秒前
疯狂的凡梦完成签到 ,获得积分10
8秒前
羊咩咩完成签到,获得积分10
8秒前
9秒前
泡面完成签到 ,获得积分10
9秒前
ZJX应助mobei采纳,获得10
10秒前
123456发布了新的文献求助10
10秒前
JY完成签到 ,获得积分10
10秒前
umi完成签到,获得积分10
10秒前
111完成签到 ,获得积分10
12秒前
miketyson完成签到,获得积分10
13秒前
王猛发布了新的文献求助10
13秒前
科研通AI2S应助Jennifer采纳,获得10
14秒前
pp完成签到 ,获得积分10
16秒前
qhtwld完成签到,获得积分10
16秒前
16秒前
阿峤完成签到,获得积分10
17秒前
Owen应助黄鸿祥采纳,获得10
18秒前
miyier完成签到,获得积分10
19秒前
烟里戏完成签到 ,获得积分10
19秒前
一卷钢丝球完成签到 ,获得积分10
19秒前
21秒前
柴胡完成签到,获得积分10
22秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290747
求助须知:如何正确求助?哪些是违规求助? 4442048
关于积分的说明 13829071
捐赠科研通 4324837
什么是DOI,文献DOI怎么找? 2373882
邀请新用户注册赠送积分活动 1369248
关于科研通互助平台的介绍 1333323