DA-CNN-based similar terahertz signal identification for intelligent characterization of internal debonding defects of composites under high-resolution mode

太赫兹辐射 纤维增强塑料 卷积神经网络 表征(材料科学) 材料科学 计算机科学 特征提取 鉴定(生物学) 人工智能 模式识别(心理学) 复合材料 光电子学 纳米技术 植物 生物
作者
Xingyu Wang,Yafei Xu,Yuqing Cui,Wenkang Li,Liuyang Zhang,Ruqiang Yan,Xuefeng Chen
出处
期刊:Composite Structures [Elsevier]
卷期号:322: 117412-117412 被引量:4
标识
DOI:10.1016/j.compstruct.2023.117412
摘要

With the prevalent occupation of glass fiber reinforced polymer (GFRP) composites in engineering structures, quality inspection of GFRPs is particularly urgent to evaluate their health state. As a typical damage form during the manufacturing and lifetime service of GFRP, debonding defects not only degrades the structural strength and remaining performance of composite materials, but also brings about unpredictable challenge to overall safety of the system. Recently, the combination of terahertz (THz) spectroscopy and artificial intelligence (AI) technique has emerged great potential for automatic defect identification inside composites. However, conventional AI algorithms are difficult to classify similar THz signals and may degrade THz detection accuracy of defects due to limited feature extraction capability. Here we propose a deformable attention convolutional neural network (DA-CNN) framework-based THz characterization system, in which the defect datasets are established firstly by the THz time domain spectroscopy (THz-TDS), and then the DA-CNN framework is adopted to realize the automatic defect location and imaging by accurate THz signals classification. It is worth noting that the proposed DA-CNN framework has powerful feature extraction capability to automatically identify internal GFRP defects, especially for similar THz signals at the edge of debonding defects. A series of experiments have been performed to validate the effectiveness of proposed system, which will provide a new solution for intelligent and automatic THz characterization of internal debonding defects of composites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zfy发布了新的文献求助10
1秒前
1秒前
1秒前
Maor完成签到,获得积分10
1秒前
白菜发布了新的文献求助10
2秒前
2秒前
3秒前
妮妮完成签到 ,获得积分10
5秒前
5秒前
傲娇的凡旋应助spurs17采纳,获得10
5秒前
长情若魔完成签到,获得积分10
7秒前
XM完成签到,获得积分10
7秒前
7秒前
LQW发布了新的文献求助30
7秒前
大个应助Rrr采纳,获得10
7秒前
8秒前
9秒前
9秒前
11秒前
zfy完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
13秒前
w17638619025完成签到 ,获得积分20
14秒前
撒上咖啡应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
15秒前
菠萝吹雪应助科研通管家采纳,获得30
15秒前
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
15秒前
西内!卡Q因完成签到,获得积分10
16秒前
我是125应助www采纳,获得10
16秒前
小二郎应助鲜艳的棒棒糖采纳,获得10
16秒前
Zzzzzzzzzzz发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808