DA-CNN-based similar terahertz signal identification for intelligent characterization of internal debonding defects of composites under high-resolution mode

太赫兹辐射 纤维增强塑料 卷积神经网络 表征(材料科学) 材料科学 计算机科学 特征提取 鉴定(生物学) 人工智能 模式识别(心理学) 复合材料 光电子学 纳米技术 植物 生物
作者
Xingyu Wang,Yafei Xu,Yuqing Cui,Wenkang Li,Liuyang Zhang,Ruqiang Yan,Xuefeng Chen
出处
期刊:Composite Structures [Elsevier]
卷期号:322: 117412-117412 被引量:1
标识
DOI:10.1016/j.compstruct.2023.117412
摘要

With the prevalent occupation of glass fiber reinforced polymer (GFRP) composites in engineering structures, quality inspection of GFRPs is particularly urgent to evaluate their health state. As a typical damage form during the manufacturing and lifetime service of GFRP, debonding defects not only degrades the structural strength and remaining performance of composite materials, but also brings about unpredictable challenge to overall safety of the system. Recently, the combination of terahertz (THz) spectroscopy and artificial intelligence (AI) technique has emerged great potential for automatic defect identification inside composites. However, conventional AI algorithms are difficult to classify similar THz signals and may degrade THz detection accuracy of defects due to limited feature extraction capability. Here we propose a deformable attention convolutional neural network (DA-CNN) framework-based THz characterization system, in which the defect datasets are established firstly by the THz time domain spectroscopy (THz-TDS), and then the DA-CNN framework is adopted to realize the automatic defect location and imaging by accurate THz signals classification. It is worth noting that the proposed DA-CNN framework has powerful feature extraction capability to automatically identify internal GFRP defects, especially for similar THz signals at the edge of debonding defects. A series of experiments have been performed to validate the effectiveness of proposed system, which will provide a new solution for intelligent and automatic THz characterization of internal debonding defects of composites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Amber完成签到,获得积分10
1秒前
时光翩然轻擦完成签到,获得积分10
1秒前
lml520完成签到,获得积分10
3秒前
天天快乐应助秉烛游采纳,获得10
3秒前
3秒前
周七七发布了新的文献求助10
3秒前
3秒前
科研通AI2S应助up采纳,获得10
4秒前
人语完成签到 ,获得积分10
4秒前
huohuo完成签到,获得积分10
4秒前
CHEM_XIE完成签到,获得积分10
4秒前
4秒前
yvonnema123完成签到,获得积分10
4秒前
4秒前
柑橘应助jgpiao采纳,获得10
5秒前
5秒前
爆螺钉完成签到,获得积分10
5秒前
萧水白应助lzx采纳,获得10
5秒前
太叔灭龙完成签到,获得积分10
6秒前
若什么至完成签到,获得积分10
6秒前
6秒前
hao发布了新的文献求助10
6秒前
tianya完成签到,获得积分10
6秒前
花无双完成签到,获得积分0
7秒前
丰盛的煎饼应助伍寒烟采纳,获得10
7秒前
鲸鲸~发布了新的文献求助10
7秒前
cici完成签到,获得积分10
9秒前
粉色完成签到,获得积分10
9秒前
9秒前
太叔灭龙发布了新的文献求助10
9秒前
9秒前
耶耶发布了新的文献求助10
9秒前
nxf发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
打打应助IAMXC采纳,获得10
10秒前
明亮的冰香完成签到 ,获得积分10
11秒前
亻鱼完成签到,获得积分10
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143174
求助须知:如何正确求助?哪些是违规求助? 2794297
关于积分的说明 7810446
捐赠科研通 2450505
什么是DOI,文献DOI怎么找? 1303862
科研通“疑难数据库(出版商)”最低求助积分说明 627081
版权声明 601384