Deep learning aids simultaneous structure–material design discovery: a case study on designing phase change material metasurfaces

纳米光子学 材料设计 计算机科学 反向 深度学习 反问题 等离子体子 材料科学 人工智能 纳米技术 光电子学 几何学 数学 数学分析 万维网
作者
Soumyashree S. Panda,Sushil Kumar,Devdutt Tripathi,Ravi S. Hegde
出处
期刊:Journal of Nanophotonics [SPIE - International Society for Optical Engineering]
卷期号:17 (03) 被引量:6
标识
DOI:10.1117/1.jnp.17.036006
摘要

The capabilities of modern precision nanofabrication and the wide choice of materials [plasmonic metals, high-index dielectrics, phase change materials (PCM), and 2D materials] make the inverse design of nanophotonic structures such as metasurfaces increasingly difficult. Deep learning is becoming increasingly relevant for nanophotonics inverse design. Although deep learning design methodologies are becoming increasingly sophisticated, the problem of the simultaneous inverse design of structure and material has not received much attention. In this contribution, we propose a deep learning-based inverse design methodology for simultaneous material choice and device geometry optimization. To demonstrate the utility of the proposed method, we consider the topical problem of active metasurface design using PCMs. We consider a set of four commonly used PCMs in both fully amorphous and crystalline material phases for the material choice and an arbitrarily specifiable polygonal meta-atom shape for the geometry part, which leads to a vast structure/material design space. We find that a suitably designed deep neural network can achieve good optical spectrum prediction capability in an ample design space. Furthermore, we show that this forward model has a sufficiently high predictive ability to be used in a surrogate-optimization setup resulting in the inverse design of active metasurfaces of switchable functionality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助ZDM6094采纳,获得10
1秒前
和谐半仙完成签到,获得积分20
1秒前
Gloven完成签到,获得积分20
1秒前
我是老大应助老刀采纳,获得10
1秒前
cai完成签到 ,获得积分10
1秒前
天天快乐应助斑马不一般采纳,获得10
2秒前
2秒前
2秒前
2秒前
keyan完成签到,获得积分10
3秒前
芦同学完成签到,获得积分10
4秒前
4秒前
4秒前
大模型应助姜友舜采纳,获得10
4秒前
开朗艳一发布了新的文献求助10
5秒前
5秒前
6秒前
在水一方应助Cassiopiea19采纳,获得10
6秒前
动听的康乃馨完成签到,获得积分20
6秒前
Lau发布了新的文献求助10
7秒前
7秒前
7秒前
lxcy0612完成签到,获得积分10
7秒前
不争馒头争口气完成签到,获得积分10
8秒前
zhzhzh完成签到,获得积分10
9秒前
瓜老师完成签到,获得积分20
9秒前
9秒前
风中冰香应助科研通管家采纳,获得10
9秒前
嘿嘿应助科研通管家采纳,获得10
9秒前
风中冰香应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
舒敏关注了科研通微信公众号
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
LJC完成签到,获得积分10
9秒前
李健应助科研通管家采纳,获得10
10秒前
Hello应助开朗艳一采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525344
求助须知:如何正确求助?哪些是违规求助? 4615587
关于积分的说明 14549232
捐赠科研通 4553605
什么是DOI,文献DOI怎么找? 2495428
邀请新用户注册赠送积分活动 1475975
关于科研通互助平台的介绍 1447716