Deep learning aids simultaneous structure–material design discovery: a case study on designing phase change material metasurfaces

纳米光子学 材料设计 计算机科学 反向 深度学习 反问题 等离子体子 材料科学 人工智能 纳米技术 光电子学 几何学 数学 数学分析 万维网
作者
Soumyashree S. Panda,Sushil Kumar,Devdutt Tripathi,Ravi S. Hegde
出处
期刊:Journal of Nanophotonics [SPIE - International Society for Optical Engineering]
卷期号:17 (03) 被引量:6
标识
DOI:10.1117/1.jnp.17.036006
摘要

The capabilities of modern precision nanofabrication and the wide choice of materials [plasmonic metals, high-index dielectrics, phase change materials (PCM), and 2D materials] make the inverse design of nanophotonic structures such as metasurfaces increasingly difficult. Deep learning is becoming increasingly relevant for nanophotonics inverse design. Although deep learning design methodologies are becoming increasingly sophisticated, the problem of the simultaneous inverse design of structure and material has not received much attention. In this contribution, we propose a deep learning-based inverse design methodology for simultaneous material choice and device geometry optimization. To demonstrate the utility of the proposed method, we consider the topical problem of active metasurface design using PCMs. We consider a set of four commonly used PCMs in both fully amorphous and crystalline material phases for the material choice and an arbitrarily specifiable polygonal meta-atom shape for the geometry part, which leads to a vast structure/material design space. We find that a suitably designed deep neural network can achieve good optical spectrum prediction capability in an ample design space. Furthermore, we show that this forward model has a sufficiently high predictive ability to be used in a surrogate-optimization setup resulting in the inverse design of active metasurfaces of switchable functionality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zrk发布了新的文献求助10
刚刚
sakura发布了新的文献求助10
刚刚
1秒前
1秒前
高高完成签到,获得积分10
1秒前
1秒前
2秒前
踏实汉堡完成签到,获得积分10
2秒前
2秒前
马马发布了新的文献求助10
2秒前
3秒前
3秒前
浮游应助孙朱珠采纳,获得10
3秒前
4秒前
道边的路人甲完成签到,获得积分10
4秒前
窗外的你发布了新的文献求助10
5秒前
耍酷发布了新的文献求助10
5秒前
5秒前
可爱的函函应助荷包蛋采纳,获得10
6秒前
陈陈陈完成签到,获得积分20
6秒前
雷锋发布了新的文献求助10
7秒前
whoKnows应助火火采纳,获得20
7秒前
7秒前
hezaly发布了新的文献求助10
8秒前
斯文败类应助不安的冷荷采纳,获得10
8秒前
我口中说的永远完成签到 ,获得积分10
8秒前
yy发布了新的文献求助10
9秒前
9秒前
9秒前
传奇3应助cwq采纳,获得10
9秒前
赘婿应助cwq采纳,获得10
9秒前
9秒前
充电宝应助cwq采纳,获得10
9秒前
9秒前
李爱国应助cwq采纳,获得10
9秒前
小二郎应助cwq采纳,获得10
9秒前
深情安青应助cwq采纳,获得10
9秒前
大个应助cwq采纳,获得10
10秒前
田様应助cwq采纳,获得10
10秒前
斯文败类应助cwq采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336