Deep learning aids simultaneous structure–material design discovery: a case study on designing phase change material metasurfaces

纳米光子学 材料设计 计算机科学 反向 深度学习 反问题 等离子体子 材料科学 人工智能 纳米技术 光电子学 几何学 数学 数学分析 万维网
作者
Soumyashree S. Panda,Sushil Kumar,Devdutt Tripathi,Ravi S. Hegde
出处
期刊:Journal of Nanophotonics [SPIE - International Society for Optical Engineering]
卷期号:17 (03) 被引量:6
标识
DOI:10.1117/1.jnp.17.036006
摘要

The capabilities of modern precision nanofabrication and the wide choice of materials [plasmonic metals, high-index dielectrics, phase change materials (PCM), and 2D materials] make the inverse design of nanophotonic structures such as metasurfaces increasingly difficult. Deep learning is becoming increasingly relevant for nanophotonics inverse design. Although deep learning design methodologies are becoming increasingly sophisticated, the problem of the simultaneous inverse design of structure and material has not received much attention. In this contribution, we propose a deep learning-based inverse design methodology for simultaneous material choice and device geometry optimization. To demonstrate the utility of the proposed method, we consider the topical problem of active metasurface design using PCMs. We consider a set of four commonly used PCMs in both fully amorphous and crystalline material phases for the material choice and an arbitrarily specifiable polygonal meta-atom shape for the geometry part, which leads to a vast structure/material design space. We find that a suitably designed deep neural network can achieve good optical spectrum prediction capability in an ample design space. Furthermore, we show that this forward model has a sufficiently high predictive ability to be used in a surrogate-optimization setup resulting in the inverse design of active metasurfaces of switchable functionality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mynbv完成签到,获得积分10
1秒前
科目三应助123采纳,获得10
1秒前
羽宇发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
眼睛大的可乐完成签到,获得积分10
2秒前
浮游应助徐小采纳,获得10
3秒前
852应助徐小采纳,获得10
3秒前
3秒前
max完成签到 ,获得积分10
3秒前
3秒前
青阳发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
Lancent完成签到,获得积分10
5秒前
5秒前
7秒前
超帅花瓣发布了新的文献求助10
8秒前
洛城发布了新的文献求助10
8秒前
NexusExplorer应助吗喽采纳,获得10
9秒前
今晚打老虎完成签到,获得积分10
9秒前
9秒前
摸鱼帝王发布了新的文献求助10
9秒前
知常完成签到,获得积分10
10秒前
10秒前
星辰大海应助羽宇采纳,获得10
10秒前
领导范儿应助无聊的访枫采纳,获得10
10秒前
10秒前
mynbv关注了科研通微信公众号
11秒前
傲寒完成签到 ,获得积分10
11秒前
犀利狗发布了新的文献求助10
11秒前
orixero应助寒来暑往采纳,获得10
12秒前
12秒前
小二郎应助瓦尔迪采纳,获得200
14秒前
14秒前
珠珠完成签到,获得积分10
14秒前
烟花应助xiaotailan采纳,获得10
15秒前
紫气莲莲完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632254
求助须知:如何正确求助?哪些是违规求助? 4726532
关于积分的说明 14981567
捐赠科研通 4790212
什么是DOI,文献DOI怎么找? 2558228
邀请新用户注册赠送积分活动 1518633
关于科研通互助平台的介绍 1479071